‘3

AP NG W N TN

« v e - . PR B [v TN
W W T T T TN W T T T T W W N T e N W

N me A N
W T

LA o o ans S nha e s _amn

-

-

SKED: A Course Scheduling
and Advising Software

RAUL MIHALI, TAREK SOBH, DAMIR VAMOSER

Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, Connecticut 06601

Received May 2002; accepted 23 September 2003

ABSTRACT: This article presents a software application that can solve the problem of
course scheduling and advising. The employed algorithms offer optimal course scheduling
outputs for any given set of courses and requirements, as well as allowing for customizations
by advisors or students. If the correct set of requirements and departmental courses has been
set, the results of the application can be directly used for registration purposes. The proposed
software is thus capable of saving hours of time for advising faculty. Once the school specific
data and requirements have been set, for any specific student information, the application will
search and output the schedules that will allow the student to graduate fastest and in the least
number of semesters/quarters possible. Depending on the factors and data considered, the
execution time varies from a few seconds to a few minutes. Currently, we have successfully
tested and implemented the application at the University of Bridgeport, CT. © 2004 Wiley
Periodicals, Inc. Comput Appl Eng Educ 12: 1-19, 2004; Published online in Wiley InterScience

(www.interscience.wiley.com); DOI 10.1002/cae.10054

Keywords: education; student advising; course scheduling; scheduling algorithms

INTRODUCTION

Each year at the beginning of a new academic
semester, most advisors face a very common and
particularly tedious and time consuming problem:
deciding for each student what course schedule would
be ideal for the following semester so that the student
would graduate in the fastest possible time and also
have his/her specific preferences and pre-requisites
satisfied.

The factors that have to be considered vary from
school specific requirements such as course pre-

Correspondence to T. Sobh (sobh@bridgeport.edu).
© 2004 Wiley Periodicals Inc.

requisites, co-requisites, spring and fall offerings, to
student specific ones, such as transferred credits or the
subjective desire to choose or not a given course.
While some advisors might be able to derive reason-
able solutions in a reasonable amount of time, the
process takes most of the advising time. The student
will have to “trust” the advisor that the given sched-
ule is the best choice, and in many cases the results
will later on prove that the student could have actually
graduated faster, or that specific school requirements
have been violated or simply that the student’s load
and preferences could have been better balanced.
For an easier understanding of the following
sections, some of the terms that are often used for
discussing the details of the employed algorithm are
being described. Post secondary education is usually

1

2 MIHALI, SOBH, AND VAMOSER

being categorized in fields of studies defined as
majors. Each major has its unique class curriculum
and requirements, usually preset for years and under-
going limited infrastructure changes. Since a student
can usually choose one or very few majors to study,
the problem is considered at the major level.

The completion of a major usually implies that a
student goes through a given number of courses,
following department and inter-department require-
ments, spring/fall restrictions, maximal number of
credits per semester as well as any particular re-
quirements that may apply to him/her as a result of
an advisor suggestion. Most of the majors would
typically require around eight semesters for comple-
tion and, depending on the number of credits taken at
a time, the student would be considered freshman,
sophomore, junior, or senior. The courses that are to
be taken are mainly directly relevant to the major,
while others are general requirements for all the
majors, or particular pre- or co-requisites for various
relevant courses.

A pre-requisite of a course A is defined as a
course that a student needs to have taken already in
order to be able to take course A. A course can have
none or many pre-requisites and all of them need to be
satisfied.

A co-requisite of a course A is a defined as a
course that a student needs to have taken in order to be
able to take course A, but can also be taken in the
same semester as course A.

An academic year is composed of a fall se-
mester and a spring semester (or 3—4 quarters in a
quarter based system—please note that the application
can be easily adjusted to suit custom academic
schedules). While usually most of the general re-
quirement courses are offered in both semesters,
major specific or particular lab-intensive courses are
often offered once a year (or once every two years, in
some cases).

The maximum number of credits per semester is
the number of credit hours that limits the total credits
that a student can take during any given semester.

The maximum number of semesters represents
the maximum number of semesters in which a student
should try to graduate.

As an example, as of now, the Bachelors of
Computer Engineering degree at the University of
Bridgeport, requires the completion of 8 semesters at
an average load of 18 credits per semester and a total
of 131 credits. Most of the courses are directly related
to the Computer Engineering field and general re-
quirements consist of courses of math, physics,
English composition, etc. Through this study we will
elaborate on this curricular example.

r——

THE ALGORITHM

The goal of the algorithm is to provide the course
schedules that would allow a student to graduate in the
fastest possible time, from any semester that he/
she might currently be in. The major specific informa-
tion described in “Introduction™ is used as data and
guidance rules for the search process, together with
student specific information [1].

The idea of an exhaustive search is not really a
suitable solution. In the cases we have tested, it
resulted in searching times ranging from few seconds
to few days [2]. To overcome this search time
problem, we have formulated and implemented a
goal-seeking algorithm tailored to our specific
problem (similar algorithms can be found in [3]).

Each course is assigned a requirement cost. The
requirement cost of a course is defined as the longest
possible chain of pre-requisites that contains the re-
spective course. For example, if course D has as pre-
requisite course C, and course C has as pre-requisite
course B, and course B has as pre-requisite course A,
this would make a chain of pre-requisites of require-
ment-cost 3 for course A. The longest chain that can be
found for course A will be its associated requirement-
cost. To reflect a worst-case scenario, for this cost, the
co-requisites are being treated as pre-requisites.

Based on the requirement cost, the algorithm will
try to schedule the courses with the highest cost first,
thus minimizing the number of semesters a student
needs to be in the University [4].

A course is also being associated with an
availability cost. The availability cost of a course is
the number of semesters that one has to go through
before one would be able to take that course. The cost
depends on pre-requisites, co-requisites, and spring/
fall offerings. For example, a course with an avail-
ability cost of three can be taken in three semesters
from now, this is a result of its co- and pre-requisites
combined with the spring/fall offerings. A course with
the availability cost 0 reflects a course for which all
the pre- and co-requirements have been satisfied and
the course is also offered in the current semester (fall
or spring semester).

Having defined the above two costs, a general
scheme of the algorithm can be formulated:

1) If the student has already taken (transferred) any
courses, update the co- and pre-requisites, as
well as the list of to be taken courses.

2) For all the to be taken courses, calculate the
availability cost.

3) From all the to be taken courses with the
availability cost 0, calculate the requirement
cost.

- <v—v~v-‘-‘\1

4) From all the to be taken courses with the
availability cost 0, pick up those that have the
highest requirement cost, until the maximum
number of credits per semester has not been
exceeded. Let us call this a closed list of courses
[5].

5) If there was a closed list of courses, then, if the
lowest requirement cost in this list coincides
with the highest requirement cost of the rest of
the courses selected at 3, remove (““put back™)
all courses with this cost from the closed list.

6) From the courses with the availability cost 0
that are not in the closed list and have the
highest requirement cost, form combinations {6]
and keep only those that when added with the
closed list credits do not exceed the maximum
number of credits per semester. Let us call the
results open lists, representing lists of possible
semesters.

7) For each of the lists from the open lists, repeat
from step 1) until all the courses have been
successfully scheduled, and record for future
display the schedules with the quickest comple-
tion time.

Example:

Based on the taken courses and the semester for
which the algorithm is scheduling, the following
courses prove to have an availability cost of zero:
AD101, CPE286, CPE471, ENGL204, HUMC202,
MATH214, MATH301, MATH314, ME223,
SSCC201 (please see “Appendix” for a description
of the courses, these being part of a set of courses
which will be used throughout the study). Basically,
these would be all the courses that a student could
theoretically attend the following semester. The
courses, sorted descending by the maximum require-
ment cost, have the following information (Table 1):

Table 1 Course Requirement Cost

Course Credits Cost

ME223
CPE286
ENGL204
MATH301
SSCC201
ADI101
HUMC202
MATH314
CPE471
MATH214

w
N

W W WWWWWe—Ww
SO =P P, NN W

SKED 3

Having the maximum number of credits per
semester set to 18, the algorithm will pick follow-
ing courses for the close list: ME223, CPE286,
ENGL204, MATH301, SSCC201, AD101 (see step
4). According to step 5, the closed list will omit course
ADI101 and retain ME223, CPE286, ENGL204,
MATH301, and SSCC201.

Based on step 6, the following three open lists
will be created:

ME223, CPE286, ENGL204, MATH301,
SSCC201, AD101;

ME223, CPE286, ENGL204, MATH301,
SSCC201, HUMC202; and

ME223, CPE286, ENGL204, MATH301,
SSCC201, MATH314.

Each of them will be recursively explored further,
as step 7 indicates.

THE SOFTWARE PACKAGE

In its current stage, the software package has been
developed using Microsoft Visual Basic and is com-
posed of four distinct parts. The Data Manager part
allows for managing of the necessary data and rules
that mainly pertain to the major as a whole and that
typically do not need to be modified for each student.
The Profiler allows for the managing of student spe-
cific information that changes from student to student.
The Schedules is the part where the results of the
algorithm will be output, and Others is a part that
contains various global settings, as well as a mini
web server mode that allows application to be used
over a web browser. By having this structure, various
personnel can modify and work with specific infor-
mation. For example, the registrar would normally use
the Data Manager to add/remove/edit courses. The
advisors would use the Profiler to adjust student spe-
cific information, while ‘the students would use the
Schedules to select their desired schedule of study.

The Data Manager

The Data Manager tab (Fig. 1) was designed to
facilitate the input and management of all the data and
rules (course requirements, school preferences, etc.)
that would pertain specifically to a major, and would
normally not need adjustment over short periods of
time. The idea is to have this data loaded and verified
one time, and then used as a shared database by the
advisers of a certain major.

For more convenient handling of the information,
the data management selection has been divided into
five different options:

4 MIHALI, SOBH, AND VAMOSER

Figure 1 The Data Manager.

 Courses

» Requirements

» Spring/Fall Offerings
« Special Courses

+ Special Requirements

Courses. The courses window allows for the direct
input, editing, or removal of the course specific in-
formation (Fig. 2).

For a course, the software will store a unique
KEY, made as a combination of letters and digits and
used internally throughout the algorithm functions
when referring the courses. CREDITS, represents the
number of credits of a course (a numeric value that is
used internally). FULL NAME and DESCRIPTION
are simply informative fields and have significance
solely for the user. All the necessary courses should
be added here. The courses visible in Figure 2 and the
following figures are part of the courses that are
needed at University of Bridgeport for the Bachelor of
Computer Engineering degree.

no description avail
no desexiption available
no description avaeilable
no deseription available
no description svailsble
no deszcription availabie
neo description availsble
noe description availsbla
ne description available
no descriprion swallable
no description available

Capstone Seminar
CHEM103 Genaral Chemistyry I
CPEZ10 Digital Dasign I

CPE286 Introduction to Micropro.
CPR31Z Computer Organization
CPE315 Pigital Design I with L.
CPR387 Enbadded . System Design
£PR408 Operating Systems

CPE410 Introducticon to Computer..
CPRe4? CPE447
CrR44e Introduction to VWLSI Das..
CPE449A Senior Project part A
CPE4438 Senior Project part B
CPR460 Introduction to Robetics
CPR47L Computer Communications ..
ot

no descriprion svailsble
no description availsbla
noe description available
no descripvion available
po destription svailshl

DWW W OO R®SWE QR

Figure 2 The course-managing window.

Requirements. The requirements window allows for
the managing of the requirements between classes
(Fig. 3).

The left-most list of courses contains all the
courses introduced through the Courses option. For
each course, various requisite courses can be chosen.
Note that, on the right list, are courses such as
FRESHMAN, SOPHOMORE, JUNIOR, and
SENIOR. These courses are added by default by the
software and only have the role of adding better
control on course requirements, in fact counting for
zero credits. By checking the co-requisites check box,
the requisites in the right-most list will behave as co-
requisites for the selected course on the left.

The software will check for redundant or circular
reference requisites and not allow them. A redundant
requisite appears when a pre-requisite of a course A
has as pre-requisite that coincides with another pre-
requisite of the course A.

For example, if CPE449A requires CPE387 and
CPE449B requires CPE449A, it would be redundant
to have CPE449B require CPE387 as well and the
software will detect and notify of any such case.

A circular reference appears when a requisite for
a course happens to have that course as a requisite as
well, directly or indirectly. For example, if CPE449B
requires CPE449A and CPE449A requires CPE387,
there would be a circular reference if CPE387 would
require CPE449B. The software will detect and warn
accordingly of such problems.

Fall/Spring Offerings. The Fall/Spring Offerings
window allows setting courses to be offered in
particular semesters (Fig. 4). Courses from the left
most list can be selected and added to any of the two
right lists representing the fall or the spring semesters.

For example, the course AD101 is being offered
both fall and spring semesters, while ENGL204 is
only offered in the spring. The software will warn if
any of the courses are not offered at all.

Ma’

MATH112
MATH214
MATH215

111
ENGLCIOT PHYS112
ENGR111
OPHOMORE
SCC20

LC2
FREELECT SSCC202
TELECT

Figure 3 Requirements.

Figure 4 Fall/Spring Offerings.

Special Courses/Groups

In many cases, it could be that out of a group of
various courses only a few of them need to be taken,
whichever the student chooses. For example, out of
CPE410, CPE460, CPE471, and CPE473, only two
courses need to be taken (whichever the student
prefers), as shown in Figure 5.

Through this window, such groups of classes
can be specified. From the list of all the courses
(left most), the desired courses need to be added to the
middle list by using the >>add courses command,
and once the desired number to be taken has been
chosen from Count, the group can be added. Note that
each course has its own requisites and from the way
they are selected, this can facilitate—or not—a faster
completion of the major. The algorithm takes this fact
into account when searching.

Special Requirements. The Special Requirements
window was added as a means of “enforcing” a
student to take a certain class no later than a certain
semester, as to provide better control for advising
(Fig. 6).

For example, MATH227 does not have a high
requirement cost, and normally the algorithm will try

CAPS330 j ooz s
CHEM103 | *CPE447#CPE44B™

CPE210 | *MaTHZ14*MATH3L4*
{CPE286
CPE312

Figure 5 Special Courses/Groups.

SKED 5

Figure 6 Special Requirements.

to place it in a later semester, first dealing with the
“urgent” courses. This fact might not be appropriate
when the course in case might be an easy one and
should not be left for junior or senior years, despite
that it does not have an explicit chain of pre-/co-
requisites to fill.

Through the special Requirements window, a user
can control such issues. By forcing a requirement cost
of 6 for MATH227, this will oblige the algorithm to
place this course at least 6 semesters before the
completion of the degree, or in the case where the
student has less than 6 semesters remaining to com-
pletion, to assign it immediately in the first semester if
possible.

From the left-most list of courses, the user would
choose a course, assign it a cost through the latest
semester value and add it.

The Profiler

The profiler allows controlling the information that is
specific to a student, such as the courses that he/she
has taken, or that the advisor might want to adjust on a
case-to-case basis to obtain better results (Fig. 7).

Figure 7 The Profiler.

6

MIHALI, SOBH, AND VAMOSER

The profiler is structured as follows:

Taken Courses list allows the advisor to select the

course that the student has taken so far.

Status Definition allows the advisor to adjust the

total number of credits that would define any of
the sophomore, junior, or senior statuses. While
normally they would be defined at once for all
the students, it proves to be convenient when
trying to enforce various advisor preferences.
In the example from Figure 7, if the student has
taken more than 37 credits and less than 71, he/
she has a SOPHOMORE status. Anything less
than 37 credits is considered FRESHMAN, and
anything more than 105 credits is considered
SENIOR.

The Maximum number of semesters, Maximum

number of credits per semester, and Starting
semester are being defined in the profiler as
well.

The advisor also has the choice to ignore some of

the restrictions, such as Special Courses, Special
Requirements, or fall/spring restrictions. Such
options prove to be powerful especially when
advising junior/senior students who could per-
form independent studies instead of the normal
courses or have a difficult schedule that would
allow exceptions from the department.

Ignore substitutes display has just a formatting

result in the output solutions. When the option
is not checked, the courses that are members of
a Special Group will be displayed as a group,
allowing for a more compact view (see “A
Complete Example: Design and Implementa-
tion History” for details).

The Search Criteria allows changing the searching

algorithm being used. The Full Heuristic
(recommended) option, or the default one, will
use the search algorithm as described in this
study, and should be the only one needed. For
testing purposes, for evaluating speed differ-
ence, and performance, there is the Light
Heuristic search choice and the Exhaustive
search one. The Light Heuristic method is very
similar to the full heuristic (default) choice,
except that it does not expand the closed list to
various open lists. Note that this can often result
in no solutions for the problem. The Exhaustive
Search algorithm, will not create a closed list
based on requirement costs, instead it will apply
full combinations on the list of course that are
available to be taken at a certain time. Note that
this option can be extremely slow and does
not assure optimal solutions. Again, the search

choice option has only been implemented for
testing and debugging purposes. The same
applies for the Show Costs option, which will
display the requirement cost for all the courses.

A profile can also be saved or loaded, thus easily
maintaining the records of each student for future
reference.

The Schedules

Once the profiler has been adjusted for a particular
scenario, and preferentially saved, by switching to the
Schedules tab and clicking go the software will start
searching for the optimal course schedules (Fig. 8). A
progress report is displayed and the process can be
cancelled at any time if the solutions already found are
sufficient.

The solutions found are being displayed as a
tree, each leaf representing the set of courses for
a semester. For example CS101*ENGLC101*
ENGR111*MATH110*PHYS111 is the only optimal
choice for a first semester, while the fifth semester
can be either ADI101*CPE315*CPE387*EE360*
ENGR300*SSCC201 or CPE315*CPE387*EE360*
ENGR300¥*HUMC202*SSCC201. Once one of the
two semesters has been chosen, the semesters from its
sub-tree should be considered for continuation.

The Special Groups of courses defined through
the Data Manager, are normally being displayed in
parentheses, to note the fact that any of the courses
from the parentheses enclosed set can be chosen. For
example, (CPE410/CPE460/CPE471/CPE473) would
suggest to the student to choose any of the four

~ courses and only one of them. Multiple such paren-

theses can occur through a semester. These are cases
in which the student should choose accordingly for
each of these “course menus”. If the Ignore substi-
tutes display in the Profiler is checked, these groups of

-CS10TENGLOIOTENSRTI TMATHHTPHYSTT1
& CST02ETHICS MATHTIZMATH22#PHYS 112
& CHEM102'CPE 210EE233EE 205" MATH21 BMATH323
- CPE286"EE 204" EE 236 ENGL204"HUMC 201 MATH201ME 223
& AD101"CPEZ F'CPE 3B7EEIB'ENGRI0NSSCC201
| & [CPEA10/CPE4SD/CPE4T1/CPEAZ3 (MATHZIAMATH314PCPY
(CPE410/CPEABO/CPE7T1/CPE 473(CPE447/CPE 448)CAP)
- CPE4BBCPE 4498 FREELECTTELECT
(CPE410/CPE4B0/CPE 471 /CPE473PCFEAST/CPE 448y CPE
. CAPSI9PLPEACSTPE 4498 TELEC)

- {CPE410/CPEAE0/CPE 471 /CPE473{CPE 447 /CPE448)CPE,
CAl ELECT

Figure 8 The Schedules.

courses will be expanded in multiple solutions with
single choices. A text file with all the solutions is
being output as well.

Other Features

In its current form, the application can also be run as
an HTTP server, allowing access to the profiler
through a web browser, and thus providing a more
flexible way of sharing the database among advisors.
A minimal level of security is implemented as well,
allowing for IP filtering and user/password based
access. Future work and directions will be detailed in
“Current Limitations and Future Work.”

A COMPLETE EXAMPLE: DESIGN
AND IMPLEMENTATION HISTORY

By presenting a complete example on which the
application was tested, this section provides a good
understanding of the current design of the application,
the limitations and problems that have been encoun-
tered, and how were they corrected. Four more ex-
amples are presented in the following sections, which
should demonstrate a thorough evaluation of the range
of problems/advising scenarios that the package is
capable of tackling. Many of the settings, including
requisites, pre-requisites, courses, limiters, etc., can
be changed on the fly and the application could be
executed again for the new values. As will be seen
through the following examples, these changes are
critical for variations that appear in a student’s curri-
cula, adjustments of course offerings at a University,
or the conversion (transfer) of courses from one
University to another.

At the University of Bridgeport, a student that has
just been admitted as an undergraduate freshman in
Computer Engineering, will have to complete a total
of 131 credits, through a schedule of 8 semesters at an
average of 18—19 credits per semester. The courses
that are to be taken are highlighted in Table 2, where
the “key” is the short form of the name commonly
used when referring to courses.

For the given scenario, there are three groups of
courses out of which only a few need to be taken: out
of CPE 410, CPE471, CPE473, and CPE460, only
two (any) need to be taken; out of MATH214 and
MATH314, only one (any), and also only one out of
CPE447 and CPE448.

Also note that MATH109 and ENGL100 can be
usually replaced by placement exams, thus bringing
the total to 131 credits.

The following courses (given in alphabetical
order here) are being offered in the fall semester:

SKED 7

Table 2 List of Courses for the Computer Engineering

Major
Key Name Credits
ADI101 Fine Arts 3
CAPS390 Capstone Seminar 3
CHEM103 - General Chemistry 1 4
CPE210 Digital Design I 3
CPE286 Introduction to Microprocessors 3
CPE312 Computer Organization 3
CPE315 Digital Design IT with Laboratory 4
CPE387 Embedded System Design 3
CPE408 Operating Systems 3
CPE410 Introduction to Computer Architecture 3
CPE447 FPGA Design 3
CPE448 Introduction to VLSI Design 3
CPE449A Senior Project part A 1
CPE449B Senior Project part B 3
CPE460 Introduction to Robotics 3

Computer Comm. I: System
CPE471 Analysis 3
CPE473 Local Area Networks 3
CPE489 Software Engineering 3
CS101 Introduction to Computing I 3
CS102 Introduction to Computing I 3
EE233 Network Analysis I 3
EE234 Network Analysis II 2
EE235 Network Analysis I Lab 1
EE236 Network Analysis I Lab 1
EE348 Electronic Circuits T 3
EE360 Controls 3
EE443 Applied Digital Signal Processing 3
ENGL100 Basic Composition 3
ENGL204 Technical Writing for Comp.

Sci. & Eng. 1
ENGLCI101 Composition and Rhetoric I 3
ENGR111 Introduction to Engineering I 3
ENGR300 Economics and Management of Eng. 1
ETHICS Integrated Studies In Comp

(INSTC101) 3
FREELEC1 Free Elective One 3
HUMC201 Introduction to Humanities I 3
HUMC202 Introduction to Humanities 1T 3
MATH109 Precalculus Mathematics 4
MATH110 Calculus and Analytic Geometry I 4
MATH112 Calculus and Analytic Geometry IT 4
MATH214 Linear Algebra 3
MATH215 Calculus and Analytic Geometry TI1 4
MATH227 Discrete Structures 3
MATH301 Differential Equations 3
MATH314 Numerical Methods 3
MATH323 Probability and Statistics 3
ME223 Materials Science for Engineers 3
PHYS111 Principles of Physics I 4
PHYS112 Principles of Physics II 4
SSCC201 Introduction to the Social Sciences I 3
SSCC202 Introduction to the Social Sciences II 3
TELEC1 Technical Elective 1 3

8 MIHALI, SOBH, AND VAMOSER

AD101, CAPS390, CHEM103, CPE210, CPE315,
CPE387, CPE410, CPE447, CPE448, CPE449A,
CPE449B, CPE460, CPE471, CPE473, CPEA489,
CS101, CS102, EE233, EE235, EE360, EE443,
ENGL100, ENGLC101, ENGRI111, ENGR300,
FREELEC1, HUMC201, HUMC202, MATH109,
MATH110, MATH112, MATH215, MATH227,
MATH323, PHYS111, PHYS112, SSCC201,
SSCC202, and TELEC1. And the following are
offered in the spring semester: AD101, CAPS390,
CHEM103, CPE210, CPE286, CPE312, CPEA(S,
CPE449A, CPE449B, CPE471, CS101, CS102,
EE234, EE236, EE348, ENGL100, ENGL204,
ENGLC101, ETHICS, FREELEC1, HUMC201,
HUMC202, MATH109, MATH110, MATH112,
MATH214, MATH215, MATH227, MATH301,
MATH314, ME223, PHYS111, PHYS112, SSCC201,
SSCC202, and TELECL.

The following courses are considered core re-
quirements: CHEM103, CPE210, CPE286, CS101,
EE233/235, ENGRI111, ENGR300, MATH215,
MATH301, MATH323, and ME223.

The following courses are considered program
requirements: CPE312, CPE315, CPE387, CPE408,
CPE447/448, CPE449, CPE489, CS102, CS227,
EE234, EE348, EE360, EE443, and MATH214/314.

Note that most of the courses that are being
offered both semesters are the core requirements and
the courses that are usually general requirements for
many majors (i.e., ENGLC101, ENGL100, and
MATH109).

The final and most important constraint exists in
the set of requisites and pre-requisites that exists
between courses, shown in Figures 15 and 16.
Figures 17—21 show respectively the Design Se-
quence, the Software Sequence, the Integrated Soft-
ware/Hardware Design Sequence, the Hardware
Sequence, and the Electrical Engineering Sequence
of courses.

Based on the presented data, the university came
up with a suggested course schedule shown in
Figure 22. The schedule has been designed manually,
by student advisors/professors. While the schedule
certainly meets the constraints imposed by the Com-
puter Engineering degree requirements, any change or
customization for a particular student’s needs (espe-
cially in the case of a transfer student) would be hard
to implement, given a rigid 4-year proposed schedule
of courses.

The first goal of the application was to find a
suitable, fairly normalized and scalable data structure
that could contain the given information. While a
trivial Microsoft Access database seemed a sufficient
start in the beginning, after few months of testing and

debugging we have reached the currently presented
Data Manager. It is essential to have various filters that
can guarantee the integrity and quality of the data
input by a user.

As a next step, we designed a brute force
(combinatorial) algorithm, mainly as an immediate
way of exercising the versatility of our data struc-
ture and to get an idea regarding the execution time
(see “The Profiler,” Search Options).

Some of the problems surfaced: unacceptable
execution time (a first solution was output after more
than 24 h of execution time); performing the various
data manipulation routines directly on the Access
table was a significant slowdown as well.

At this stage, we started to implement the
suggested algorithm.

The skeleton idea was primarily derived from the
sequence of requisites and pre-requisites that suggest
a certain “order of importance” for courses. The data
has been copied into memory and all the data mani-
pulation routines were simplified and changed to work
from the memory. For a faster implementation and
result, the co-requisites have been considered pre-
requisites and the groups of special courses have been
ignored. The execution time was reduced significantly
and the algorithm started to produce promising
outputs.

However, due to the incomplete implementation
and consideration of the problem, the application was
not outputting completely realistic solutions. We then
adjusted the algorithm to be able to work with groups
of courses (note that while a student has the choice to
choose which to take, each has its own list of require-
ments and some choices could improve the overall
output). Co-requisites have also been added and
handled properly. The concepts of SOPHOMORE,
JUNIOR, and SENIOR have also been implemented.

The new results were more promising and closer
to viable solutions, however, it became obvious that
many of the courses happen to have very few or no
pre-requisites and also a low requirement cost, a fact
that would make the algorithm consider them pri-
marily for the later semesters.

The following is an example of such a problem:

CHEM103, CPE210, CS101, MATH110, PHYS111

MATH314, CS102, ENGLCI101, MATHI112,
PHYS112

CPE315, EE233, EE235, ENGR111, HUMC201,
MATH215

CPE286, CPE312, EE234, EE236, ENGL204,
ETHICS, MATH301

AD101, CPE387, EE360, ENGR300, HUMC202,
SSCC201

CPEA410, CPE408, EE348, FREELEC1, MATH227,
SSCC202

CPE471, CPE448, CPE449A, CPE489, EE443,
MATH323

CAPS390, CPE449B, ME223, TELECI.

Each row represents a different semester, the first
one being fall, freshman year, and then succeeding
spring, fall, and so on. While the course dependency
rules are met, it was not acceptable to have a course
such as MATH227 in the JUNIOR year, such a course
should be taken much earlier due to its relative light
content and other program specific reasons. More dif-
ficult courses that have been scheduled to be taken
earlier should be placed instead of MATH227.
Because there were no rules that could facilitate such
a choice, we introduced the concept of special re-
quirements, through which a user can assign a cer-
tain requirement cost and so force the algorithm to
schedule various courses no later than specified
semesters.

In addition, the application did not specify if any
of the grouped courses can be swapped or not, in other
words, in a semester sequence such as CPE471,
CPE448, CPE449A, CPE489, EE443, MATH323, can
a student take CPE410, or CPE460 or CPE473 instead
of CPE471?

Another problem was that the application was
sometimes outputting hundreds of solutions all in a
sequential text file, making it very hard to read and
choose for a simple and optimal choice.

At this point the algorithm has been adjusted to
solve the above problems, and also optimized again.
We have decided to build a tree of solutions, each
semester being a node level, thus converting the
relatively discouraging number of solutions into a
fairly simple choice, that can easily derive from the
student’s preference (Fig. 9).

The example through Figure 12, shows the case
of a student that has taken (possibly through place-

& CS10TENGLC10TENGRITTMATHTIOPHYS 111
£ CS10ETHICS MATHTI2MATH227PHYS 112

& CHEMI 03CPE2DEE 233 EE 235" MATHZ1 MATH323

CPEADSCPE449B"FREELECTTELECY :
410/CPE4BO/CPE4TT/CPEAT3)LPE 447 /CPE44B)CPE
(CPE410/CPEABOVCPE ST /CPEATIMCPE4A7/CPEMBITPE .
THZI4/MATHST4TCPE RN 2EE U FREELECT HUML202'S)
H 5 CPE387*EE3BENGR30MHUMER02'S 50020 S
CPE 28R EE 234 EE 236 ENGL 204 MATHIO "ME 228 SEC201 -
-CPE286"EE 234EE 236" HUMC201 " MATHID1 ME 2235 5CC201

Figure 9 Sample output schedule.

SKED 9

ment exams) MATH109 and ENGL100, starts in the
fall semester, has a restriction of 18 credits per
semester, and the following credit limitations:
SOPHOMORE, 37; JUNIOR, 71; SENIOR, 105
(Fig. 10).

The application was run on a Pentium IIT 600
computer with 256 Mb of RAM, and the output was
completed in 73 s (a text file containing the solutions
in a serial order is also being output).

Although there are almost 300 schedules that
would all be acceptable from an advisor’s point of
view, the student can now easily choose for each
semester his/her preferred choice, and continue to
expand for the next semesters of his/her choice, while
still meeting the constraints of the program and still
finishing in the fastest number of semesters possible.
Note that there are no possibilities of graduating in
less than 8 semesters, and any possibilities that would
take longer are being omitted through the Maximum
Number of Semesters option from the Profiler.

We have also added a way of displaying properly
the groups of courses, displaying all of those that can
be taken at a given moment in parenthesis. A progress
bar, an option to cancel, and few other small features
proved as well very useful.

In the example from Figure 13, the application
found unique semester choices for Fall Freshman,
Spring Freshman, and Fall Sophomore, after which
there are choices.

For the Spring Sophomore semester, the student
can either take CPE286, EE234, EE236, ENGL.204,
HUMC201, MATH301, ME223 or CPE286, EE234,
EE236, ENGL204, MATH301, ME223, SSCC201 or
CPE286, EE234, EE236, HUMC201, MATH301,
ME223, SSCC201.

Suppose the student prefers the first choice, he/
she can choose for his/her Fall Junior semester
ADI101, CPE315, CPE387, EE360, ENGR300,

. ;!!!
s eE

Figure 10 Profiler Scenario.

i

T R ———————————

10 MIHALI, SOBH, AND VAMOSER

SSCC201 or CPE315, CPE387, EE360, ENGR300,
HUMC202, SSCC201.

Suppose the student prefers again the first choice,
his/her options for the Fall Junior semester are
(CPE410/CPE460/CPE471/CPE473), (MATH214/
MATH314), CPE312, EE348, HUMC202, SSCC202
or (MATH214/MATH314), CPE312, EE348, FREE-
LEC1, HUMC202, SSCC202.

Note that the student needs to take only one of
the courses from each parenthesis. He/She does
not need to check whether he/she qualifies or not
for any of them or whether they are offered or not,
as this is being taken care of through the algo-
rithm. Suppose the student prefers the first choice,
for his/her Fall Senior year he/she can choose
from (CPE410/CPE460/CPE471/CPE473), (CPE447/
CPEA48), CAPS390, CPE449A, CPE489, EE443
or (CPE410/CPE460/CPE471/CPE473), (CPE447/
CPE448), CPE449A, CPE489, EE443, FREELEC1
or (CPE410/CPE460/CPE471/CPE473), (CPE447/
CPE448), CPE449A, CPE489, EE443, TELECI.

Taking the first choice, the only option for the last
semester remains CPE408, CPE449B, FREELEC1,
and TELEC].

From this point on, an exhaustive testing se-
quence of possible scenarios has been circulated
through the application by University advisors.
Various minor problems have been fixed and we have
finally decided on the exact variables and categories
that a user need to manipulate. The current Data
Manager, Profiler, Schedules, and Others modules
have been adopted [7], with all the previously pre-
sented features. The output solutions are matching
closely to the one proposed by the department, how-
ever, the application can find surprisingly more and
better solutions, that show the versatility of the
system, especially when dealing with transfer credits
or difficult to meet student preferences.

A Second Example: A Typical Scenario

To demonstrate the advantages of the application, a
second example is given, this time for a transfer
student.

Student X has just been admitted at the University
of Bridgeport. He/she has already attended 4 seme-
sters at another University and based on the transfer
information, the following list of courses are consider-
ed taken already: CHEM103, CPE210, CPE286,
CPE315, CPE410, CPE460, CS101, CS102, EE235,
EE360, ENGL100, ENGLCI101, ENGRII1I1,
ENGR300, HUMC201, MATHI109, MATHI10,
MATH112, MATH227, MATH301, MATH314,
MATH323, PHYS111, PHYS112, and SSCC201.

The program requirements at the previous Uni-
versity were different from those of the University of
Bridgeport. This makes it even more difficult in
deciding which courses the student start taking,
Finally, the student would like to start in the Spring
and in addition, he/she would hope this time to see few
alternatives, as to balance his/her time load with his/
her part time job.

After the Profiler is adjusted accordingly
(Fig. 11).

The application outputs a total of 69 different
possibilities that could all get the student graduated in
4 semesters (Fig. 12).

After going over few of the offered choices, the
student decides on a schedule that matches closely to
his/her needs. He/She will start by taking AD101,
CPE312, EE348, ENGL204, ETHICS, and ME223.

In the Spring, then continue with: (CPE447),
CPE387, EE233, FREELEC1, HUMC202, SSCC202
in the fall (note the parenthesis for CPE447, denoting
one of the group courses, but the fact that it is the only
choice at the moment). Next Spring, he/she will take:
CAPS390, CPE408, CPE449A, EE234, EE236,
MATH215, TELECI, and then finish next Fall with
CPE449B, CPE489, and EE443.

However, things do not go exactly as planned for
student X. After the first semester, he/she fails course
CPE312, and returns for a new advising solution.
Although he/she would have normally graduated in
the next 3 semesters, this can not happen anymore due
to the fact that CPE312 is a requirement course with a
high cost (that is needed by many of the next courses
in order to continue). The algorithm outputs 12 pos-
sible solutions in a fastest graduation time of 4
semesters (Fig. 13).

If he/she had failed AD101, EE348, or ME223,
he/she would have still been able to graduate in 3
semesters. A quick look at the remaining courses
reveals this. For example, a student can only take

Figure 11 Secondary example profiler.

\D101CPE 3 PEEMPENGL2OPETHICS ME 223
- [CPE447PCPE 387 EE 3P EEAIFHUME 20245560202
- (CPE447CPE 387 EE2IFREELECTHUMC 2025500202
& CAPSIS0'CPEADB"CPE MIAEE 23 EE 23 MATH2IS*TELECT
i CPE4498*CPE409EE 443
- [CPE448YCPE I8P EE 233 EEA4FHUMC202°96CC202
448PCPE387EE 233 FREELECTHUMC202:9500202

#-ADT01"CPE 2 ENGL204'E THICS "HUME202"ME 223
#-AD101-CPE 2ENBL204-ETHICS ME 22385 CL202
& CPES12EE 4B ENGLOAE THICS HUMC202°ME223
@ CPE312"EE348'EN8L2N ETHICS'ME SCC202
o \ IR

Figure 12 Second example scheduling (A).

CPE449B after he/she took CPE449A. CPE449A has
as requirements CPE312, ETHICS, and ENGL204,
and, e.g., CPE312 is not being offered in fall, which
brings up the required number of semesters to an
obvious minimum of 4.

Given the situation, the student chooses for the
fall: CPE447, CPE387, EE233, EE443, HUMC202,
SSCC202, then he/she plans CAPS390, CPE312,
EE234, FREELEC1, MATH215, and TELEC]1 for the
spring, CPE449A and CPE489 for the next fall, and
finally CPE449B, CPE408, and EE236.

Although in the next semester the student fails
course EE443, a new rescheduling shows that he/she
can still graduate in three more semesters (Fig. 14).

The student will continue with his/her previously
selected schedule, but now will add EE443 to his/her
first senior semester.

A Third Example: An Unusual Scenario A

In the next three examples, the emphasis will be on
exposing the usefulness of the application in rather
unusual or tedious (time consuming) situations.
Student X arrives as a transfer student at the
University of Bridgeport, and the school from where

B lCPEM?}’CPE3B7’EEZ33‘EEM3‘1—!UMCZB2'SSEC202
| E CQPSm CPE312EE 234 EE236FREELECTMATHRIS
-3 EPEMBA"CFE!&S TELECY

i | -CPEMOBTPE49B
-CAPS390CPE 31 2 E 234" EE 236 FREELECTTELEC)
CPE44IATPEABIMATH215
i CPE40B'CPE4498

390" CPE N PEE 224 EE 236 MATH2I S TELEET
& CPE44SA'CPE4B3FREELECT
i CPE4DB"CPE 4488

-CAPS390"CPE 31 2'EE 234 FREELECT MATHRISTELECT
& wsuaémm

- CPE 408 CPE449B EE 236
cpsmz-eezsa EE296FREELECT"MATH21ISTELECT

449ACPEABS
R,

Figure 13 Second example scheduling (B).

SKED 11

L TSR3 i 3
9 CPEAGS'EEMITELEC
E E408"CPE4498
CAPS380"CPE 2 EE 34 EE236FREELECT TELECT
& CPEA4SA'CPEBIEE 44T MATH2IS
& CPE408"CPE 4438
ISOCPE N 2EE 234 EE 23 MATHZI TELECT
"PE4494°CPE 4B EE M43 FREELECT
i 'E4DITPEA49E
FCPEN 2 EE2FREELECT MATH2IS TELECY

1
CPENEEZEE236FREELECT MATHRI5*TELEDY
330"CPE4430 CPE4BIEE 443
4DB'CPE4438

Figure 14 Second example scheduling (C).

he transferred simply had no course dependency
requirements in their scheduling, allowing for the
student’s arbitrary schedule at their own risk. After
evaluating his/her transcript, this reveals that he has
taken the following courses so far: CAPS390,
CHEM103, CPE210, CPE286, CPE312, CPE315,
CPE387, CPE408, CPE410, CPE447, CPE448,
CPE449A, CPE449B, CPE460, CPE471, CPE473,
CPE489, CS101, CS102, EE233, EE234, EE235,

EE236, EE348, EE360, FEE443, ENGL100,
ENGL204, ENGLC101, ENGRI111, ENGR300,
ETHICS, FREELEC1, HUMC201, HUMC202,
MATH109, MATH110, MATHI112, MATH214,

MATH215, MATH227, MATH301, and MATH314.
Overall, 124 credits have been taken. While few
courses are left to be taken, which could suggest a
limited amount of choices and therefore little time
spent in solving them, the work becomes tedious
when mapping the course dependency imposed at the
University of Bridgeport. Making a scheduling mis-
take becomes a highly probable case, which could
result in affecting the quality of the curricula at the
University. By using the scheduling tool, this turns out
to be a trivial task and the system will reveal in
seconds a correct solution such as the following:

« first semester: ADI101,
SSCC201, TELEC1

« second (last) semester: MATH323, PHYS112,
SSCC202

ME223, PHYSI111,

It is also important to consider that the student can ask
and be provided with concrete answers regarding why
a particular schedule is preferable to others.

A Fourth Example: An Unusual Scenario B

This time, let us consider the case of transfer students
that have taken very few credits and again, not
necessarily adhering to course dependencies. Student

Undergraduate Computer Engineering
Class Dependency Graph

Sophuneyr

Lpyad:
B8 Compiter Ergineering

Conp ster Scieace

Elecrical Enginsenng

Engineering
Mechanical
Baginsering
Phyrice
Chemistry

EJERRCE

Eaglish

Humanities

[

Socal Sciences

Fae Arts

-
£

Figure 15

N
£ NMatematics -‘

j Jusisr

#
R]

L —

Course Dependency Graph categorized by types of courses. [Color

figure can be viewed in the online issue, which is available at www.inter-
science.wiley.com.}

Undergraduate Computer Engineering
Class Dependency Graph

Legend:
Design Sequence

SW Sequence

Integrated SW/HW
Design

HW Sequence
EE Sequence
Engineering Sequence
Basic Saences
Mathematics Sequence
Technical Writing

General Education

Ethics
— Prerequisite

----- » Co-requisite
a
}—b AorB
B
A
{ A same as B
B

Figure 16 Course Dependency Graph categorized by course sequences. [Color
figure can be viewed in the online issue, which is available at www.inter-
science.wiley.com.]

14 MIHALI, SOBH, AND VAMOSER

Legend:

E Desgn Sequence

Figure 17 Design Sequence.[Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

X has taken 16 credits so far as follows: CAPS390,
CPE387, CPE408, ENGL101, and MATH109.

While trying to setup a course schedule, the
advisor will notice a hard time in finding a schedule in
less than 8 semesters, which indeed is not possible in
this case. The amount of work necessary to reach this
conclusion can be frustrating and still leave doubts
among the student and the advisor, also confirming
the utility of an optimizing software package that
could double check these results. Trying this scenario
through this software package will inspire confidence
and provide a high choice of possibilities.

A Fifth Example: An Unusual Scenario C

Finally, a last and unusual scenario further demon-
strates the critical advantage of this software package.

Student X is transferring from a University that
adopts a course dependency scheme fairly close to the

Legend:
B SW Sequence

one of the University of Bridgeport, but is also more
flexible regarding the allowable number of credits per
semester. As a result, student X has taken a total of 24
credits in one semester, as follows: CS101, CPE210,
ENGL100, ENGR111, MATH109, MATH110, and
PHYS111.

Due to personal reasons, the student can only
attend the University of Bridgeport if he can be
accommodated to graduate in 6 semesters (for ex-
ample, in the case of an international student that
comes to study to the United States and has a time-
limited visa).

Trying to come up with a 6-semester solution in
regular conditions will not be easy. The task of justi-
fying and determining such a schedule will take time.
The idea then would be to try and reduce some of the
restrictions, e.g., allow more credits per semester?
Each case will require a thorough attention from an
advisor and can be hard to implement. The goal is

Figure 18 Software Sequence. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Legend:
W Integrated SW/HW
“ Design

Figure 19 Integrated SW/HW Design Sequence. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

to just find a solution, and if a tool could allow
“playing” with a few parameters and coming up with
an answer, the task would be simpler.

By inputting the scenario in the software pack-
age, it appears that the student can actually graduate in
6 semesters if allowed to take up to 22 credits per
semester and would start in the Spring. Listed below is
one of the 8 such possible solutions:

+ first semester: CHEM103, CS102, ENGLC101,
MATH112, MATH227, PHYS112

« second . semester: CPE315, EE233, EE235,
HUMC201, MATH215, MATH323, SSCC201

« third semester: (MATH314), CPE286, CPE312,
EE234, EE236, ENGL204, ETHICS, MATH301,
ME223

+ fourth semester: (CPE410/CPE460), (CPE447),
AD101, CPE387, EE360, ENGR300, HUMC202,
SSCC202

« fifth semester: (CPE410/CPE460/CPE471),
CAPS390, CPE408, CPE449A, EE348, FREE-
LECI1, TELEC1

« sixth semester: CPE449B, CPE489, EE443

CURRENT LIMITATIONS AND
FUTURE WORK

Although in its current stage the application has
enough features to be conveniently used for advising,
there are still features that need enhancements.
Students should be able to filter the list of final
solutions for their own preference. The availability
cost of a course should also take into consideration the
total number of students a course can be offered to,
and to co-relate this fact with a global database that
keeps track whether a course is still available from this
point of view. Some courses could also happen to be
offered in the same exact time, this being a case that
the algorithm should consider as well.

Besides the relatively immediate changes above,
the software will be probably converted to a com-
pletely web based interface in the future, which would
link and maintain a school database, with all the
courses for all the majors and all the information for
students stored there as well.

In its current form, the application does not
address or incorporate security measures regarding

HW Sequence

Figure 20 HW Sequence. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

16 MIHALI, SOBH, AND VAMOSER

Legend:

Bl EE Sequence

Figure 21 EE Sequence. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

the authorization of any results or changes that are to
be instated in a student’s advising scenario. This is due
to the fact that the tool has been designed to “reside”
on the desktop of an advisor and not to be networked.
Students may be provided with the same tool for them
to experiment with parameters on their own for
generating various schedule possibilities. However, if
they want their generated schedules to be considered
by advisors, they would have to give the advisors the
saved output of their solutions, and consequently
have the advisors test them through their version of
the tool and settings before officially being approved.
The security, privacy, and authorization aspects would
need thorough consideration in a networked setup.
In any networked scenario, the framework would be
similar to the current one, as an advisor will ultimately
verify a student’s preferred choices prior to their
approval.

The ultimate goal is to have a student type an ID
number (and password) from his/her home computer
and no other additional information. Based on the
ID, the software will find the major the student
belongs too and what courses he/she took already.
Consequently, the system will output immediately
the optimal possibilities and allow the student to
choose among them and register online. Once the
student confirms the selection, this reply gets ap-
pended to his/her advisor’s profile for double checking
(to avoid any possible application error or invalid
results), and if the advisor agrees with it, the student
will be notified by email and the registration process is
complete.

CONCLUSIONS

In this study, we present a software model designed to
aid students and advisors in the tedious and time-
consuming registration tasks that students and advi-
sors have to go through every semester.

The designed application can virtually eliminate
the time an advisor would need to spend with a student
on registration, optimizing for the quickest graduation
schedule, and facilitating the student’s preferences,
thus allowing time for more specific and important
student related issues.

While the algorithms have been designed and
developed in consultation, and as a result of discus-
sions with many highly experienced advising faculty
members in various Universities throughout the
country and the world, the authors do understand that
there may exist highly specific and unique scenarios
that could not be directly addressed in the proposed
model. However, in such cases, the tool can be re-
configured to help incorporate and solve many of
these unique problems and reduce the invested advis-
ing time considerably.

Currently, we have successfully tested and used
the application in the Bachelor of Computer Engi-
neering Major at the University of Bridgeport. The
tool provided excellent results. We are also in the
process of completely revamping the application to
the specifications detailed in ““Current Limitations
and Future Work,” which would result in a completely
automated advising and registration system comply-
ing with the requirements of a program of study.

Undergraduate Computer Engineering

®
L
®
:

HW Design Integrated W EE Engineering | Mathematics Basic Oeneral | Tochmical | Ethics | Other
Sequence Sequance SWHW Seq Seq Suq Saq P s Whiting
Sequence
3) 3 (3) 4 3)
-
@) () %) 3
—
®u-mzn
cszr
O] @ @ J’_@
Semaster111 c,uE EE233 [Mat21s] [a-ms BumC201
(1)
E235
O] @ ® [O) D >
Semrster 1V [CpE286] Lu]Lzs] thnsm] Hua202 | Brgi2o4]
O]
[O) @ [0) [O) ®
Semester ¥ [ESLS] (EE360](Eugr300 } [mzs]
CE38T —‘]
® O] ©) O,
e | e S
(3) o (3
)) [O)
Semester VI [CpE449A] [o,uw}[nmq
@ |
£ e)
@ | o |
()
- @ [
QEA1D (crzent]
& .
@)
o) ® 3 o]
Semester V1T (QEuvE] [CpEens } CapaC390 ﬂ‘!::
9
Fres
Elact.
*Choose 2 sut of these 4

Figure 22 A suggested Schedule. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

18 MIHALI, SOBH, AND VAMOSER

Appendix

AD101, Fine Arts, (3 credits);

CAPS390, Capstone Seminar, (3 credits);
CHEM103, General Chemistry 1, (4 credits);
CPE210, Digital Design I, (3 credits);

CPE286, Introduction to Microprocessors, (3 credits);
CPE312, Computer Organization, (3 credits);
CPE315, Digital Design II with Laboratory,
(4 credits);

CPE387, Embedded System Design, (3 credits);
CPE408, Operating Systems, (3 credits);

CPE410, Introduction to Computer Architecture,
(3 credits);

CPE447, FPGA Design, (3 credits);

CPE448, Introduction to VLSI Design, (3 credits);
CPE449A, Senior Project part A, (1 credits);
CPE449B, Senior Project part B, (3 credits);
CPE460, Introduction to Robotics, (3 credits);
CPE471, Computer Communications I: System Anal-
ysis, (3 credits);

CPE473, Local Area Networks, (3 credits);

CPE489, Software Engineering, (3 credits);

CS101, Introduction to Computing I, (3 credits);
CS102, Introduction to Computing II, (3 credits);
EE233, Network Analysis I, (3 credits);

EE234, Network Analysis II, (2 credits);

EE235, Network Analysis I Lab, (1 credit);

EE236, Network Analysis II Lab, (1 credit);

EE348, Electronic Circuits I, (3 credits);

EE360, Controls, (3 credits);

EE443, Applied Digital Signal Processing, (3 credits);
ENGL100, Basic Composition, (3 credits);
ENGL204, Technical Writing for Computer Science
& Engineering, (1 credit);

ENGLC101, Composition and Rhetoric I, (3 credits);
ENGR111, Introduction to Engineering 1, (3 credits);
ENGR300, Economics and Management of Engineer-
ing Projects, (1 credit);
ETHICS, Integrated
(INTSC101), (3 credits);
FREELEC], Free Elective 1, (3 credits);
HUMC201, Introduction to Humanities I, (3 credits);
HUMC?202, Introduction to Humanities I, (3 credits);
MATH]109, Precalculus Mathematics, (4 credits);

Studies in Computing

MATH110, Calculus and Analytic Geometry I,
(4 credits);

MATH112, Calculus and Analytic Geometry 11,
(4 credits);

MATH?214, Linear Algebra, (3 credits);

MATH?215, Calculus and Analytic Geometry 111,
(4 credits);

MATH?227, Discrete Structures, (3 credits);
MATH301, Differential Equations, (3 credits);
MATH314, Numerical Methods, (3 credits);
MATH323, Probability and Statistics, (3 credits);
ME223, Materials Science for Engineers, (3 credits);
PHYS111, Principles of Physics I, (4 credits);
PHYS112, Principles of Physics II, (4 credits);
§SCC201, Introduction to the Social Sciences I,
(3 credits);

SSCC202, Introduction to the Social Sciences II,
(3 credits); and

TELEC]1, Technical Elective 1, (3 credits).

REFERENCES

[1]1 E. H. L. Aarts and J. K. Lenstra, Local search in
combinatorial optimization, Wiley-Interscience Series
in Discrete Mathematics and Optimization, Wiley,
New York, 1997.

[2] D. H. Greene and D. E. Knuth, Mathematics for the
analysis of algorithms, 3rd edn., Birkhauser, 1990.

[31 P. Dasgupta, P. P. Chakrabarti, and S. C. Desarkar,
Multiobjective heuristic search: An introduction to
intelligent search methods for multicriteria optimiza-
tion, Kaufmann Publishers, 1999.

[4] Patrascoiu, Octavian, Marian, Gheorghe, Mitroi,
Nicolae, Elements of graphs and combinatorial
theory, methods, algorithms and programs, B.IC. All,
Romania, 1994.

[5]1 P. N. Izvercian, V. Cretu, M. Izvercian, R. Resiga,
Introduction in graph theory, the critical path method,
Editura de Vest, Romania, 1993.

[6] R. L. Graham, D. E. Knuth, and O. Patashnik, X. Oren;
Concrete mathematics, a foundation for computer
science, Addison-Wesley, Reading, MA, 1994.

[71 M. Markotty, Software implementation (practical soft-
ware engineering, Vol. 4), Prentice-Hall ECS Profes-
sional, Englewood Cliffs, NJ, 1991.

BIOGRAPHIES

Raul Mihali received his Bachelor’s of
Science and Master’s of Science degrees
in computer science, with honors, from
the Department of Computer Science and
Engineering at the University of Bridge-
port, Connecticut, in 1999 and 2000,
respectively. He is working towards his
PhD degree in computer engineering with
a dissertation on “Self Manufacturing
Fully Autonomous Maobile Manipula-
tors,” and continues to work closely with Dr, Tarek Sobh in the
interdisciplinary Robotics, Intelligent Sensing, and Control (RISC)
Labs at the University of Bridgeport. His current research interests
include active sensing under uncertainty, robots and electromecha-
nical systems prototyping, mobile autonomous manipulators, stealth
and security oriented robots, polymorphic structures and robot
actuators, assembler time optimizations, actuators and sensors for
unusual execution tasks, remote automation and manufacturing,
digital design, and VLSIL Raul Mihali has published over 40 journal
articles, conference papers and book chapters in the arcas of
automation, vision and sensing, prototyping, optimization, algo-
rithms, and programming techniques and is continuously involved in
related research and development efforts.

Tarek M. Sobh received the PhD and MS
degrees in computer and information
science from the School of Engineering,
University of Pennsylvania, in 1991 and
1989, respectively, and the BSc in engi-
neering degree with honors in computer
science and automatic control from the
Faculty of Engineering, Alexandria Uni-
versity, in 1988. He is currently the dean
of the School of Engincering at the University of Bridgeport,
Connecticut; the founding director of the Interdisciplinary Robotics,
Intelligent Sensing, and Control (RISC) laboratory and a professor
ol computer science, computer engineering, mechanical engineer-
ing, and electrical Engineering. He was the interim chairman of
computer science and computer engineering and the director of
external engineering programs at the University of Bridgeport, He
was an associate professor of computer science and computer
engineering at the University of Bridgeport from 1995 to 1999, a
research assistant professor of computer science at the Department
of Computer Science, University of Utah, from 1992 to 1995, and a
research fellow at the General Robotics and Active Sensory
Perception (GRASP) Laboratory of the University of Pennsylvania
from 1989 to 1991. He was the chairman of the Discrete Event and
Hybrid Systems Technical Committee of the IEEE Robotics and
Automation Society from 1992 to 1999, and the chairman of the
Prototyping Technical Committee of the IEEE Robotics and
Automation Society from 1999 to 2001. His background is in the
fields of computer science and engineering, control theory, robotics,
automation, manufacturing, Al, computer vision, and signal
processing. Dr. Sobh’s current research interests include reverse
engineering and industrial inspection, CAD/CAM, active sensing/
imaging under uncertainty, robots and electromechanical systems

prototyping, sensor-based distributed control schemes, unifying
tolerances across sensing, design, and manufacturing, hybrid and

SKED 19

discrete event control, modeling, and applications, and mobile
robotic manipulation. He has published over 130 refereed journal
and conference papers, and book chapters in these and other areas.
Dr. Sobh edited or coedited issues of several international research

journals in these areas and is a member of the editorial boards of the

Computing Journal and the International Journal of Science and
Technology. He has been on the program committees of several
international conferences and has chaired and organized several
conferences, sessions, workshops, and tracks in robotics, automa-
tion, and sensing meetings and has made many presentations,
invited talks, invited lectures and colloguia, seminars, and panel
participations, at research meetings, university departments,
research centers, and companies. Dr. Sobh is active in consulting
and providing service to many industrial organizations and
companies. He has consulted for many companies in the United
States, Switzerland, India, Malaysia, Dubai, and Egypt, to support
projects in robotics, automation, manufacturing, sensing, numerical
analysis, and control. He has also worked at Philips Laboratories in
New York, and a number of companies in Egypt. Dr. Sobh has been
awarded many grants to pursue his work in robotics, automation,
manufacturing, and sensing. Dr. Sobh is a licensed professional
clectrical engineer (PE.), a certified manufacturing engineer
(CMfgE) by the Society of Manufacturing Engineers, a certified
professional manager (C.M.) by the Institute of Certified Profes-
sional Managers at James Madison University, a certified reliability
engineer (C.R.E.) by the American Society for Quality Control, a
member of Tau Beta Pi (The Engineering Honor Society), Sigma Xi
(The Scientific Research Society), Phi Beta Delta (The International
Honor Society), and Upsilon Pi Epsilon (The Computing Honor
Society). Dr. Sobh was the recipient of the Best Research Award by
the World Automation Congress in 1998, Dr. Sobh is a member or
senior member of several professional organizations including;
ACM, [EEE, IEEE Computer Society, IEEE Robotics and
Automation Society, IEEE Computer Society Technical Committee
on Pattern Analysis and Machine Intelligence (PAMI), the
International Society for Optical Engineering (SPIE), the National
Society of Professional Engineers (NSPE), the NewYork Academy
of Sciences, the American Society of Engineering Education
(ASEE), the American Society of Quality (ASQ), the American
Association for the Advancement of Science (AAAS), the Society
of Manufacturing Engineers (SME), and a founding member of the
Society for Industrial Computing.

Damir Vamoser graduated with a BS in
computer science degree and is currently a
master of science candidate in computer
science at the University of Bridgeport.
He is a recipient of several All-American
Scholar Collegiate Awards and was a
distinguished member and the president of
the professional development committee
of the Bridgeport Rotaract Club. Mr.
Vamoser is currently employed by Jupi-
termedia Corporation, formally Internet.com, as a senior developer
and project leader. His development efforts are centered on building
medium to large-scale e-commerce systems. His current fields of
research include building and optimization of large-scale task-
specific distributed systems,

