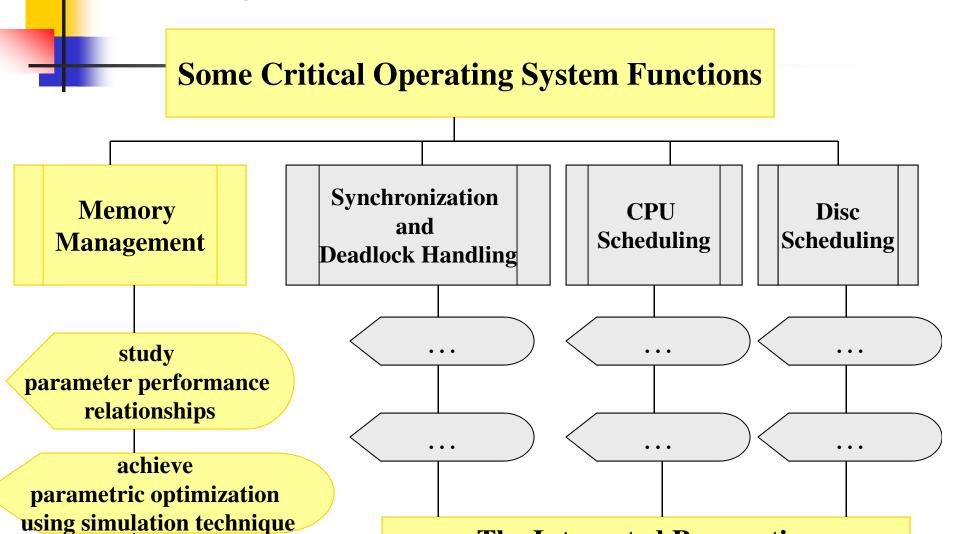


Tarek M. Sobh and Yanchun Liu Presented by: Bei Wang University of Bridgeport

•

Table of Content

- Parametric Optimization
- Introduction
 - Memory Management
 - Paging
 - CPU Scheduling
- Simulation Specifications
 - Variable Parameters
 - Fixed Parameters
 - Other Parameters
 - Simulation Goal
- Memory Management Paging Model
- CPU Scheduling Model
- Implementation Framework
- Simulation Results
- Conclusion



Parametric Optimization

An Alternative Approach of OS Study

- What is the critical OS function?
- What are the parameters involved?
- How to measure the performance?
- What is the relationship between parameter and performance?
- How to achieve optimization using simulation techniques?

Parametric Optimization of Some Critical Operating System Functions

The Integrated Perspective

Introduction

- Multi-Process OS
- Memory Management
- Paging Mechanism
- CPU Scheduling

Memory Management

- Keep track of memory in use
- Memory allocation
- Manage swapping between main memory and disk

Memory Management (Cont.)

- Three disadvantage related to memory management are
 - Synchronization
 - Redundancy
 - Fragmentation

Memory Management (Cont.) Parameters involved

- Memory Size
- Disc access time (transfer time, latency and seek)
- Time slot for RR
- Compaction thresholds (percentage and hole size)
- RAM access time
- Fitting Algorithm
- Disc Scheduling algorithm choice (FIFO, SSTF, SCAN, LOOK, etc)
- Disc Structure and Capacity (Surfaces/tracks/etc.)
- Disc writing mechanism (where to write back processed pages)

- Paging entails division of physical memory into many equal-sized frames
- When a process is to be executed, its pages are loaded into any available memory frames

Paging Parameters Involved

The parameters involved in this memory management scheme are:

- Page Size
- Page Replacement Algorithms, such as First-In-First-Out, Least-Recent-Used, Least-Frequently-Used and Random

Paging Effect of Page Size

- Large page size: internal fragmentation
- Small page size: requires large amounts of memory space to be allocated for page tables and more memory accesses potentially
- Finding an optimal page size: not easy, dependent on the process mix and the pattern of access.

Paging Effect of Page Replacement Algorithms

- LRU, FIFO, LFU and Random replacement are four of the more common schemes in use
- LRU is often used and is considered to be quite good
- LRU may require substantial hardware assistance

Paging Performance Measures

- Average Waiting Time
- Average Turnaround Time
- CPU utilization
- CPU throughput
- Replacement ratio (The ratio of number of page replacement to total number page accesses)

CPU Scheduling

- Round Robin Mechanism
- Scheduling Criteria

CPU Scheduling Round Robin Mechanism

- Timesharing systems: a small unit of time – a time quantum is used
- Ready queue: circular queue
- CPU scheduler: traverses the ready queue, allocating the CPU to each process for a time interval of up to 1 time quantum

CPU Scheduling Scheduling Criteria

- CPU utilization: 40 percent (lightly loaded) to 90 percent (heavily used)
- Throughput: The number of processes that are completed per time unit.
- Turnaround time: The interval from the time of submission of a process to the time of completion.
- Waiting time

Simulation Specifications Methodology

- 4 page replacement algorithms
- Randomizer: page access pattern
- dynamic algorithm: number of memory pages to be assigned to a process
- Analyze the collected data and examine their inter-relationship

- Disc access time (seek + latency + (job size (in bytes)/500000) ms, where, seek and latency are variable parameters)
- Round Robin time Slot (a variable parameter, multiple of 1ms)

Simulation Specifications Fixed parameters

- Disc configuration (8 surfaces and 300 tracks/surface).
- Process sizes range (20KB to 2MB)
- Disc writing mechanism
- Disc capacity (512 MB, initially 50% full with jobs)
- Memory Size (32MB)
- RAM Access Time (14ms)
- Process execution times (2 ms to 100ms)

Simulation Specifications Other Parameters

Page access: random generator

Timing wheel data structure

 CPU Round Robin fashion: as long as there are processes in the first level of the queue

Simulation Specifications Simulation goal

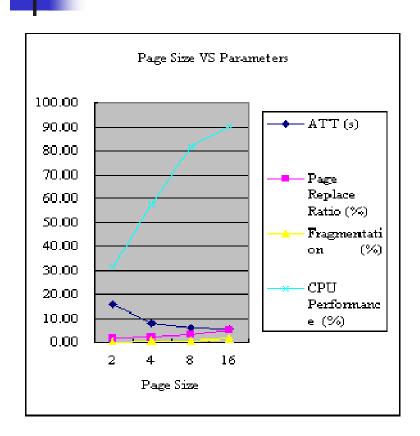
- The goal is to optimize some of the following performance measures such as:
 - Average waiting time
 - Average turnaround time
 - CPU utilization
 - Maximum turnaround time
 - Maximum waiting time
 - CPU throughput

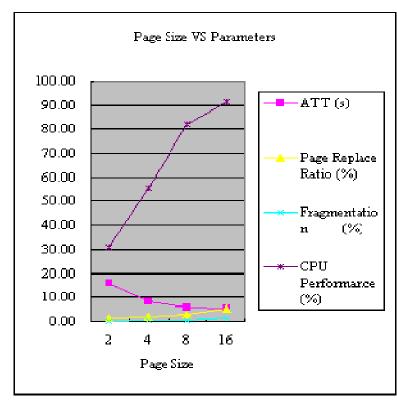
Memory Management Paging Module

- Disk: m processes are created (50% full)
- Page assignment: pages in memory proportional with process size
- Place new page in transfer queue from disk to memory
- Processor execute a chosen process: RR
- Move finished process from memory to disk (FCFS)
- Simultaneous execution of processes and transfer between disk and memory
- Page fault: a page is not available in the memory

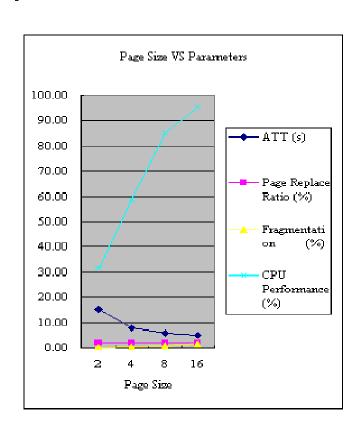
- Page sequences to be fetched from memory are generated randomly using the following mechanism: no new page is requested if a previously requested page is in transfer
- Remove page which belongs to current process: 4 algorithms, FIFO queue
- The current process transfers to a wait state: caused the page fault
- The simulation ends when all the processes finish execution and the queue is free.

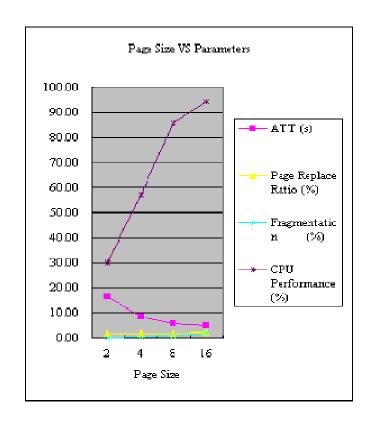
Implementation Framework


- Process control block
- Queue
- Main memory
- Disk Drive
- CPU
- Simulator

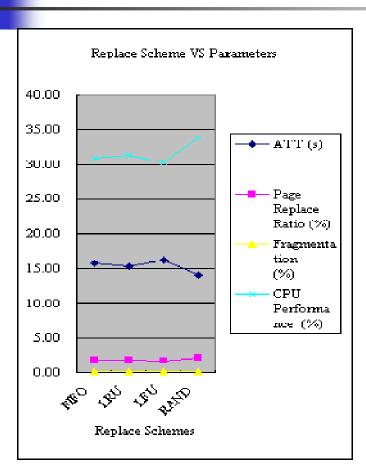


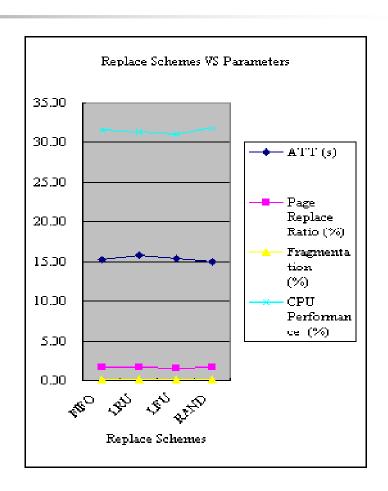
- Different combinations of parameters
- Eliminate the worst performing parameter combinations
- For example, if the simulation shows that a large time slot is superior to small ones, only large time slots are used in the simulation.




Parameters change according to page sizes

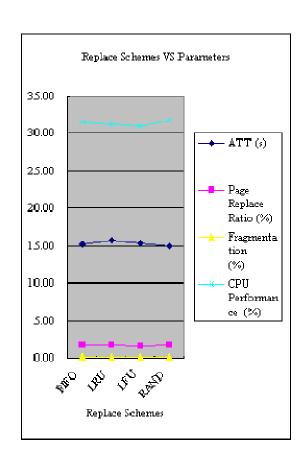
Parameters change according to page sizes (Cont.)

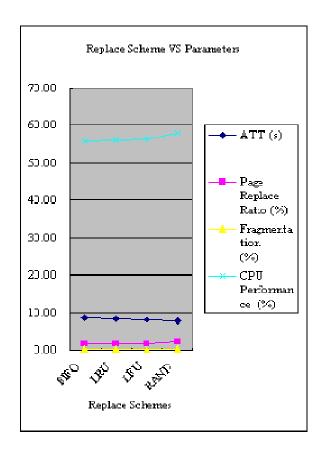



LRU/Time slot 8

LRU/Time slot 4

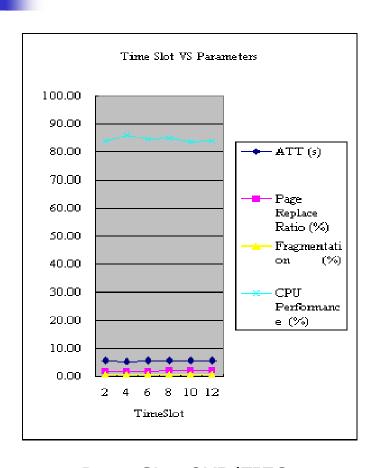
Parameters change according to page replacement schemes

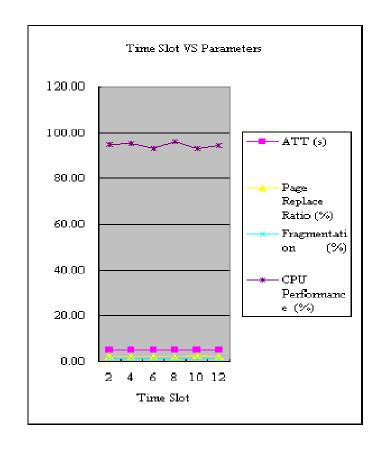

Page Size 2KB/Time slot 6



Page Size 2KB/Time slot 12

Parameters change according to page replacement schemes (Cont.)




Page Size 4KB/Time slot 6

.Page Size 4KB/Time slot 12

Effects of different time slots on different parameters

Page Size 8KB/FIFO

Page Size 16KB/RAND

Conclusion Parameter Analysis

- Page Size
- Page Replacement Algorithm
- Round Robin Time Slot
- Best Combination of parameters

- Smaller page: more references in memory→ longer ATT
- Smaller page: less internal fragmentation, more disk access time
- Large page: degeneration to continuous memory scheme; shorten ATT and increase CPU performance

Conclusion Parameter Analysis (Cont.)

- Random replacement performs best
- Page replacement ratio of LFU: high if page size >= 4KB
- Small RR time slot: higher context switch time, low CPU utilization, high turnaround time and waiting time

Future Work

- Modify to serve a specific platform or system
 - Test the parameters in extremely multiplexed systems
 - Some other parameters could also be simulated
 - For example, the disk drive searching mechanism affects the turn around time of a process

References

- Tarek M.Sobh & Abhilasha Tibrewal , 2002. <u>Parametric optimization of some critical operating system functions-an alternative approach to the study of operating system design, Bridgeport, CT, University of Bridgeport, Department of Computer Science and Engineering
 </u>
- Wenle Zhao, 1998. <u>Non-Platform Based Operating System Optimization</u>, Bridgeport, CT, University of Bridgeport, Department of Computer Science and Engineering
- Avi Silberschatz, Peter Gal ,1999, <u>Applied operating system</u> concepts, John Wiiley & Sons, Inc.
- Abraham Silberschatz, Peter Baer, 1999, <u>Operating System</u>
 <u>Concepts (5th ed.)</u>.New York: John Wiley & Sons, Inc.
- Andrew S.Tan, 1987. Operating systems: design and implementation. New Jersey: Prentice-Hall, Inc.

Thank You