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Abstract - Chances are that distance learning will 
transparently extend colleges and institutes of education 
and could plausibly overtake and turn into a preferred 
choice of higher education, especially for adult and working 
students. The main idea in e-learning is to build adequate 
solutions that can assure educational training over the 
Internet, without requiring a personal presence at the degree 
offering institution.  
The advantages are immediate and of unique importance, to 
enumerate a few: Education costs can be reduced 
dramatically, both from a student's perspective and the 
institution's (no need for room and board, for example); The 
tedious immigration and naturalization issues common with 
international students are eliminated; The limited campus 
facilities, faculty members and course schedules an 
institution can offer are no longer a boundary; Working 
adults can consider upgrading skills without changing their 
lifestyles 
We are presenting through this material a sequence of 
projects developed at University of Bridgeport and than can 
serve well in distance learning education ranging from 
simple "hobby" style training to professional guidance 
material. The projects have an engineering / laboratory 
flavor and are being presented in an arbitrary order, topics 
ranging from vision and sensing to engineering design, 
scheduling, remote control and operation. 
 
Keywords: distance learning, remote teleoperation, remote 
manipulation, web control, e-learning 
 

I. INTRODUCTION 
 

In a supportive effort towards faster distance learning 
implementation, we present through this work a sequence 
of projects that have been developed and can serve the 
process of distance learning education ranging from simple 
"hobby" style training to professional guidance material.  
The projects have an engineering / laboratory flavor and are 
part of ongoing work of the faculty and students of the 
Computer Science and Engineering Department of the 
University of Bridgeport, and are being presented in an 
arbitrary order, topics ranging from vision and sensing to 
engineering design, remote control and operation. The 
inclination is towards being able to set up physical labs 
online allowing students to use equipment / machines 
(microscopes, manipulators, for example to handle 
substances or various objects), hence the goal of creating 

tools to allow engineering lab-based courses to be offered 
via distance learning. 
 
II. MOBILE ROBOT CONTROLLED BY A PHONE 

 
In an attempt to add to the many possible ways of 
automating and implementing remote engineering, this 
project presents a complete, in depth, cost-effective solution 
for controlling a robot through phone calls. Various 
extension possibilities are being discussed as well 
(instructing a robot for vacuum cleaning, changing 
switches, moving objects, surveillance, etc). 
Mobile Robots have numerous applications: unmanned 
exploration, land mine removal, energy plants and 
manufacturing factories.  
We introduce a cost-effective robot. With the introduction 
of video cell phones it will be possible for the user to see 
the robotic movement in real-time and possibly perform 
educational exercises using a simple interface at a distance. 
Examples include “calling” a robot on the way home from 
work and have it do various jobs like vacuuming the home 
and sprinkling the garden. This could also be done by 
logging on to a web server via an internet connected device 
and sending signals to the robot [1], or directly sending 
specific commands to the robot through cellular phones to a 
wireless (or cellular) server at home (with or without a web 
connection) (figure 1). 

 

 
Figure 1: An application of a Robot with a phonechip 

We focus on communication with the robot.  The main 
objective was to make the robots more user friendly and to 
be able to communicate with them. Thus, we decided to 
design a simple prototype of a robot that can be controlled 
via phone - "Phonebot". We considered a design based on a 
phone chip 
Hardware/Software and Test Equipment Used 
Hardware Requirements: 
Flex 10K70 Chipset 
Talrik II Robot (including the Servo motors and Sensors) 
TelePhone Set 
Teltone's M-8870-01 Chip 
SPST 90-2323, 5V relay switch from RadioShack 
3.58MHz Crystal Oscillators (Part # ) 



 

 

2

Variable Power Supply 
Resistors, Capacitors and Diodes 
Software Requirements: 
Altera's MaxPlus II, OrCAD, HTML, CGI/ASP, Java, 
Matlab 
Test Equipment: 
Oscilloscope, Logic Analyzer, Multimeters, Nerd-Kit 
 
Implementation 
A call is placed to the Phonebot using either Plain Old 
Telephony System (POTS) or a Personal Communication 
System (PCS), or by using the telephony server via the 
Internet. Once the Phonebot receives the ring, a ring 
detector circuit detects it and the call is completed by 
establishing a connection between the phone chip and the 
FPGA chip (figure 2).  
The project was implemented using a top-down process: 
- sending a signal through the phone line  
  a) Ring Detect and connect phone line  
  b) DTMF decoder   
- robot control with the FPGA device 
  c) Clock Division (VHDL program)  
  d) Ring Detect  (VHDL program) 
  e) Motor Control (VHDL program)  
  f) Robot Control (VHDL program) 
The final part of the project involved assembling various 
parts of Phonebot and combining the different VHDL 
modules. 
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Figure 2:  PHONEBOT – Basic Block Diagram 

 
a) Ring Detect and Phone Line Connection 
When the phone rings, the telephone company is sending a 
ringing signal, which is an AC waveform. The common 
frequency used in the United States is 20 HZ and in Europe 
it is typically 25 Hz and it can be any frequency between 15 
and 68 Hz. Most of the world uses frequencies between 20 
and 40 Hz. The voltage at the subscribers end depends upon 
the loop length and number of ringers attached to the line; it 
could be between 40 and 150 Volts.  
The telephone line has only DC (-48V) and/or small signal 
AC (audio). In the circuit shown in Figure 3, capacitor C1 
blocks the DC and the voltage divider circuit obtained from 
the R3 and R2 resistors prevent the low level AC from 
having any effect on the circuit.  

 

 
Figure 3:  Phone detect circuit  

 
Specifications 
C1 = 1 uf, CR1, CR2, CR3 = 1N914, C2 = 10 uF, R1, R3 = 
100K, R2 = 10K  
When the telephone rings, it brings about 90V RMS of AC 
at 20Hz. When the telephone rings, the capacitor C2 is 
charged. Diodes CR1 and CR2 guarantee that the output 
(ring detect logic) does not exceed the power supply levels 
and prevent any damages to other circuits driven from its 
output. Since C2 and R1 have the time constants of 1s, the 
output goes low for 1second after the ring stops. This pulse 
is to be detected and used for connecting the telephone 
circuit by the FPGA chip [2]. 
 
b) DTMF Decoder 
Dual Tone Multi Frequency (DTMF) signals are used for 
speed dialing and replace the conventional rotary dialing 
system. These signals correspond to the digits on the dial 
pad of any modern touch-tone phone. Each of those touch-
tones is constructed with the combination of two different 
frequencies. This information can be utilized to find out 
which button was pressed on the keypad and can be used 
for various applications. The construction of the signals 
according to different frequencies is shown in table 1: 
 

Table 1:  Signals related to different frequencis 
 High Frequency Values (Hz) 

 1209 1336 1477 1633 
697 1 2 3 A 
770 4 5 6 B 
852 7 8 9 C 

LowFrequenc
y Values (Hz) 

941 * 0 # D 
These frequencies can be decoded using precise filters and 
then we can decode which digit was pressed depending 
upon these decoded frequencies. We used the M-8870-01 
DTMF decoder chip to decode this information. The chip 
uses a series of low pass and high pass filters to decode the 
frequencies. Then it uses a digital detection algorithm and a 
code converter to provide its output in the form of four 
binary output data [3]. This data is supplied to the FPGA 
chip for further use.  
 
FPGA Control 
For the controller we used the Altera’s Flex 10K70 chip. 
The FPGAs contain arrays of logic cells, and enable 
designing real systems to operate at increasingly higher 
frequencies [4]. They have the ability to increase 
integration, to place more and more electronics in a chip 
and use all available gates within the FPGA, thereby 
providing cost-effective solutions. The most important 
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factor for selecting this chip is that we can program and 
reprogram the device while it is in a system. This provides 
us with great flexibility in using the Phonebot. The 
Phonebot can be programmed within a few minutes to do 
many tasks. Once programmed the robot will have the 
“intelligence” to complete the requested task.  
 
c) Clock Division Module 
This module divides the 25MHz clock of the Altera’s 
University Board into slower clocks so that we can provide 
the precise timing for the servo-motors because these 
motors work at pulses in the order of milliseconds. The 
25MHz clock is divided into 1Mhz, 100Khz, 10KHz, 10Hz 
and 1Hz.  
 
d) Ring Detect Module  
This module takes its input from the ring detector circuit 
and the DTMF decoder, provides output to the relay for 
closing or opening the telephone circuit. As soon as a ring 
is detected this module provides a 0V signal to the relay 
and thus closes the circuit. When it senses a DTMF code for 
digit 0, it opens the switch again. We had a small problem 
while disconnecting the phone. The FPGA device stored the 
code for digit 0 even after it was disconnected and for the 
same reason next time we dialed up, it would connect and 
disconnect on its own. This problem was resolved by 
resetting the signals in the FPGA device on the falling edge 
of the SB signal (SB signal goes high when there is a valid 
code detected by the DTMF decoder).    
 
e) Motor Control Module 
The Phonebot has two servo motors to aid its movement. 
First we had to hack these motors to create a DC gearhead 
motor. The information on hacking the servos was obtained 
from Mekatronix manual for the Talrik II robot. The hacked 
servos work on Pulse Width Modulation (PWM). This 
module provides the robot with pulses at specific times. If 
we provide a pulse for 1 to 1.5ms, then the motor spins in 
one direction and if we provide a pulse for 1.5 to 2ms, then 
the motor spins in another direction. The pulses have to be 
issued in an interval of about 20ms. This module 
implements the generation of this timing.  
 
f) Robot Control Module 
This module programs the movement of the robot according 
to the detected DTMF signals. It determines the path of the 
robot and provides a signal for the servo motor control 
module controlling the direction and the duration of running 
the motors. For example, if we press 7, it moves the robot 
in the forward direction for 4 seconds; if we press 8, the 
Phonebot moves in the reverse direction for 4 seconds; and 
if we press #, Phonebot comes to a complete stop. We also 
added few bump switches to the Phonebot. These bump 
switches send a high signal to the FPGA when they are 
bumped [5]. Depending upon which bumper detects switch 
closures, the FPGA device determines where the collision 
occurred and issues a signal to the Phonebot to change the 
direction of its path. 

The final task in the project involved assembling the 
different modules together. We had to make a common 
ground for the FPGA device, the circuit we designed for the 
ring detection and the DTMF decoder [6]. The Altera board 
was not detecting the decoded signals produced by the 
DTMF decoder until a common ground was implemented.  
The main controller program was implemented in structural 
format combining the various components.  
Instead of the DTMF decoder, a voice encoder/decoder can 
be used. Similar to a DTMF decoder, the voice decoder 
would recognize certain frequencies and depending upon 
those frequencies, the Phonebot can be programmed to do 
certain tasks.  This feature could also be used for security 
purposes. Using more sensors and a visual feedback would 
make the Phonebot more animated and will be able to carry 
out more tasks. Integrating with the Internet would also add 
more access to the Phonebot. A movie showing the 
Phonebot can be seen at 
http://www.bridgeport.edu/cse/projects/phonebot/index.htm
l, as well as the controlling software of the robot 
 

III. INTERNET BASED SOFTWARE LIBRARY 
FOR THE SIR-1 SERIAL PORT CONTROLLED 

ROBOT 
 
The idea of web based control has been always envisioned 
from the first days of networked computing. Being able to 
execute operations from remote locations [7], with feedback 
of some sort, it is an active and desired choice in many 
fields, such as robotic manipulation. This project presents a 
complete web based control solution for a manipulator, thus 
exemplifying one of the possibilities that remote 
automation encompasses. 
A complex API for the control of the SIR-1 robot (figure 4) 
has been developed. Available functions include 
direct/inverse kinematics computation, serial port 
communication interfacing, and link speed control.  The 
API can support an indefinite number of port connections 
and thus control a theoretically indefinite number of SIR-1 
robots [8]. For the purpose of this project, two robots with 
their respective controllers have been used. 
Due to the high availability of serial ports on standard PCs, 
this API can be deployed virtually anywhere and in any 
environment, including the Internet, on any applications.  
 

 
Figure 4: The SIR-1 Robot 

Programming Generalities 
The SIR-1 controller accepts commands from the serial 
interface as CRLF-terminated ASCII strings. Prior to 
issuing any command, a handshaking sequence has to be 
performed. Once the character ESC has been sent, the 
controller will respond with an 8-bit integer. The respective 
bits indicate the status of each link (1 for active and 0 for 
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inactive). This is the only status update the controller will 
send throughout the process. 
Commands are in the form: 
<command char> <steps for link 1>, <steps for link 2>, … 
<steps for link 6> 
For example, in order to move the first link 100 steps, the 
following string would be sent to the serial port: 
M 100, 0, 0, 0, 0, 0 <CR><LF> 
In this case, the trailing zeros can be left out. 
Programming the controller via the serial port is thus 
reduced to assembling a command string in a buffer and 
sending it to the port character by character. 
 
Web Usable Enhancements Library Set 
Steps-degrees conversion: In order to control link 
movement by degrees rather than steps, a simple 
proportional correspondence between the number of steps 
each link can move and the angle it covers has been 
implemented [9]. 
Inverse Kinematics: Inverse kinematics functionality has 
been implemented. Link movement is no longer controlled 
only by angle, but also by absolute rectangular coordinates. 
Programming Platform: A Visual Basic port of the library 
is implemented. This allows for web deployment and robot 
control over the Internet. 
Function Library Abstract: Below is a summary of all 
functions present in the library. 
int SIR1_Handshake(); 
Initiates communication with robot. This function must be 
called before any other command can be issued.  
int SIR1_MoveLink(link L, int degrees); 
Moves one link a specified number of degrees. If L = G (the 
gripper is moved), the integer degrees specifies millimeters 
of gripper opening. 
int SIR1_MoveRobot(int AlphaBase, int AlphaShoulder, int 
AlphaElbow, int AlphaPitch, int AlphaRoll, int 
PercentGripper); 
Moves all links a specified number of degrees. 
int SIR1_GotoXYZ(int X, int Y, int Z, int PITCH, int ROLL); 
Moves the center of the gripper fingers to coordinates 
X, Y, Z, with a specified roll and pitch of the gripper 
segment.  
void SIR1_SetSpeedLinks(SPEED B, SPEED S, SPEED E, 
SPEED P, SPEED R, SPEED G); 
Sets the speed of each link to a specified value (valid values 
are 0 to 7, of type SPEED defined at the top of sir.h).  
int SIR_SetSpeedRobot(SPEED S); 
Sets the speeds of all links to the specified value.  
void SIR1_Pause(int TIME); 
Pauses robot for 1/100 * TIME seconds. No return value  
int SIR1_LinkPosition(link L); 
Returns the position of each link (in degrees) relative to the 
absolute system of coordinates defined for the robot. For 
the gripper the percentage of opening is returned.  
int SIR1_IsActive(link L); 
Checks to see if link L is active  

 
Although the SIR-1 is a relatively simple robot, it can 
accomplish complex tasks, due to its high repeatability (0.6 
mm according to specifications).  
The project clearly demonstrates the endless possibilities of 
using such a robot as SIR-1 for web/internet based remote 
automation through the implemented API, from pressing 
buttons, flipping switches or remotely controlling any other 
similar interfaces, to distance learning applications.  
 

IV. INTERNET BASED COMPUTER VISION 
FRAMEWORK FOR SECURITY, SURVEILLANCE 

AND TRACKING APPLICATIONS 
 
This project presents a possible framework to easily design 
and implement vision systems that perform useful real-time 
tasks using only off-the-shelf hardware, typically available 
through general consumer stores. 
 
1) The Problem Domain 
The general goal of any computer system is detection and 
identification of object models in an input image or stream 
of images [10]. Such general tasks are typically difficult to 
achieve with satisfactory speed and accuracy. Depending on 
the application, certain assumptions can be made about 
input images.  For example, these assumptions could 
include: Lighting condition in input images is known and/or 
constant; Object orientation in the input image is known; It 
is known that objects are not rotated out of the vision 
plane; It is known that objects are not rotated in the vision 
plane; Object is rigid; Object has constant shape; Object 
scale is known; Background of image scene is known; 
Sequence of images is available; (And /or possibly several 
others). Such assumptions make it possible to build vision 
systems that operate in real time and give acceptable 
accuracy [11]. 
 
2) Architecture 
Each algorithm dealing with a well-defined and solvable 
problem is implemented as a building block.  The system 
can be built out of blocks connected using a plain pipe 
architecture where the output of a block is fed to the input 
of other blocks.  Each system would have image acquisition 
and output analysis with vision processing implemented in 
between. This allows for a quick system implementation, 
without modifying underlying components.  Components 
can be enhanced or replaced without affecting other parts of 
the system taken into consideration [12]. 
Generally, each system would consist of three large 
components: Early processing, Feature extraction and 
Feature matching 
Early processing is the stage in which images are enhanced 
without trying to interpret them.  Components that can be 
used in this stage include: Gaussian filters, Histogram 
normalization and Color filtering 
Feature extraction selects certain feature points in the 
image that are relevant.  Sample components within this 
module include: Edge detection, Line or ellipse detection, 
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Region growing, Region splitting and Minmax point 
extraction 
Feature matching is the task of determining if model 
features are present in the feature set extracted from the 
image and how well they match.  
 
3) Sample System Requirements 
A system has to detect a face in the scene and follow it.  
Scaling, rotation in the vision plane are allowed.  Small to 
medium variation in lighting is tolerated.   Background is 
arbitrary. Rotation out of the vision plane and significant 
lighting variations are not allowed. The diagram of 
consecutive steps can be formulated as follows: 
Acquisition -> Color filtering ->  Conversion to 
Monochrome ->  Gaussian blur -> Thresholding -> 
MinMax feature extractor-> Heuristic significant feature 
detection -> Feature matcher -> Match result 
The steps from Color Filtering to Thresholding constitute 
the early vision processing.  They only enhance the image 
for later processing without extracting any higher-level 
feature data.   
The color filter removes regions that have colors considered 
not possible in the model.  For example, the sky and forest 
background are removed in this step. Conversion to 
monochrome makes the image suitable for processing with 
other algorithms. Gaussian blur removes noise and many 
small, insignificant image features.  It significantly lessens 
the number of features returned by the feature matcher. 
Thresholding removes parts of the image that are too dark, 
and therefore cannot contain objects for detection. Values 
for color filter, threshold and Gaussian blur can be specified 
at design time or extracted from the model. 
The last four steps constitute high-level vision processing.  
Feature extractor scans the image and finds parts of the 
image that are most significant for detection.   In this 
sample system, MinMax search is chosen because of its 
speed and simplicity. Local minimum and maximum points 
of image are selected as the most important points and used 
in the feature-matching algorithm. Applying a heuristic 
filter can filter features that are not relevant for detection.  
Relevance of a feature in this filter is defined as the energy 
carried by the min or max point.  Energy is the summation 
of pixel values that are affected by that minmax point. The 
feature matcher performs optimized exhaustive search 
between features detected in the image and in the model 
and assigns each pair of combinations a match value.  
Matching is based on evaluating angles between features, 
proportions of distances and proportions of amplitudes.   In 
this way, the matching function remains effective if 
rotations in the vision plane, scaling and uniform lighting 
variations are present. The combination with the highest 
match value is chosen as a possible detection candidate. If 
the match value is higher than threshold value, detection is 
successful; otherwise, the model is assumed not present in 
the image. 
 

5) System Test Results 
The original image (figure 5) has been passed through color 
filtering, blurring, thresholding, minmax feature extraction 
and heuristics to remove less significant features (figure 6). 
 

 
Figure 5: Original Image 

 

 
Figure 6: Heuristics to remove less significant features. 

 
The importance of a feature is measured in terms of the 
energy it carries.  After filtering, the remaining features are 
significant and the combinations of all of them can be 
examined quickly. Detections happen in less than one 
second using a Pentium PC and VGA resolution color 
images when detecting one model.  Lower resolution 
images are suficient for many applications, therefore the 
system could be used in real time for the detection of more 
than one model [13]. 
 
6) Possible extensions 
The modular design of the framework allows easy 
modifications and extensions to the system, such as using 
the system as a web based robotic eye that can follow faces. 
Sample modifications to improve the quality of detection 
include Fourier filtering and edge enhancement in early 
processing.  In late processing, different feature extractors 
can be used – such as Hough transforms based methods, 
line following, snakes, region splitting and region growing. 
The matcher can be efficiently replaced with neural 
networks or other heuristics instead of exhaustive search. 
Background subtraction and light elimination could also 
improve detection rates. In order to further enhance 
functionality, the system could be extended with multi 
model matching, which would make possible the detection 
of objects rotated out of the vision plane.  
 

V. INTERNET CONTROLLED SATELLITE 
TRANSPONDER (USING A REMOTELY 

CONTROLLED ROBOTIC MANIPULATOR) 
 
a) Objective 
To be able to control a satellite transponder from a remote 
location by using a robotic manipulator to mechanically 
change controls on the receiver or a UHF/infrared remote 
control of the receiver. 
The reasons a robot was used to mechanically use the 
controller unit instead of hard-wiring the controller unit (or 
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the UHF remote control) to the server were: (1) The process 
of hard-wiring can permanently damage the expensive 
controller unit and subsequently render the transponder 
useless [14,15]; (2) The robot can be easily reprogrammed 
to adapt to different controller equipment, such as working 
with a remote controller.  
To establish communication between the remote client and 
the robot via the server and enable the robot to carry out the 
desired commands without exceeding its limited workspace 
or without running into obstacles, the following tasks 
needed to be implemented: 
- Interfacing between robot and server (RS-232) 
- Interfacing between receiver and server 
- Interfacing between server and internet 
- Teaching the robot (trajectory planning and generation) 
A flowchart of the system is shown in figure 7. 
 

REMOTE
PC

SATELLITE
TRANSPONDER

RECEIVER

Remote
Control

 SERVER
Robotic
Manipulator

RS-232 

Video
Interface

INTERNET

 
Figure 7: System Schematics 

The interfacing between the robot and the server is carried 
out via the RS-232 serial port. The robot’s controller box 
simply receives commands as ASCII strings through the 
RS-232 connection. An important issue to notice is the one-
way communication (i.e. once the computer issues 
commands to the robot, the controller does not send back 
any signal to indicate the execution status of a command) 
[16]. To overcome this, it is important that a flawless 
trajectory be planned during the initialization of the robot, 
implemented so that obstacles do not pose a problem.  
Sample commands that can be issued to the robot: GC: 
Closes the gripper, GO: Opens the gripper, NT: Nest the 
robot 
The interfacing between the receiver and the server is done 
through a special interface card that takes the analog feed 
from the transponder’s receiver and converts it into a digital 
format ready to be broadcast over the Internet. The PC card 
receives a feed through a standard coaxial cable. The 
transponder can point at different ‘look-angles’ and at each 
look-angle it can receive feeds at numerous frequencies. 
The interfacing between the server and the Internet is done 
through a simple secure web server to carry HTTP requests 
from clients. It is important to ensure that only one 
individual is controlling the robot at the same time.  
Lastly, the robot must be ‘taught’ about its surroundings 
and the environment that it will be operating in. This can be 
done by fixing the position of the remote control unit and 
defining its position relative to that of the robot. This allows 

the robot to ‘know’ where the controller unit is and where 
particular controls on the unit are.  
 
b) Constraints and limitations: 
- Limited set of commands that the robot’s controller box 
can understand 
- One-way communication between the server and the 
robot’s controller 
- The web server’s clients have no access to the serial port, 
which is the only way of talking to the robot 
- Time constraints 
- Compatibility issues force use of a certain operating 
system 
 
How were the above limitations overcome to achieve the 
objective? 
The following tasks had to be carried out:  
  Configure the server-to-server HTTP requests 
- Write software allowing HTTP clients to issue commands 
to the robot via the RS-232 port 
- Write software to initialize the robot and define the work 
area 
Server configuration was not complicated, resulting in 
setting up a Windows NT server with IIS, for processing 
requests and enabling security authentication and control.  
An ActiveX control needed to be written to allow Active 
Server Pages to run executables on the server itself. 
An executable ‘writetoport.exe’ did the simple task of 
taking command-line arguments and sending these 
arguments to the robot as commands via the serial port. The 
application was written using Visual Basic.  
 
c) Robot initialization 
As mentioned previously, robot-initialization is vital to 
ensure error-free operation, especially since the robot’s 
controller unit sends back no signals to the server itself. The 
position of the remote control needs to be fixed and 
positions within the robot’s work area need to be defined.  
There are two basic types of movements: Point to Point 
(PTP) movement, XYZ movement 
PTP movement involves specifying the joint variables (the 
joint angles in this case) and changing them according to 
the desired position of the robot.  
XYZ movement involves moving the end-effector in an X, 
Y, or Z plane. The joint variables are calculated based upon 
position and desired motion and accordingly changed and 
recalculated at every point during the trajectory [17]. 
XYZ movement is much slower and inaccurate than PTP 
movement since the robot needs to perform repeated 
calculations to determine the desired position. Hence PTP 
movement was used to minimize error between the desired 
trajectory and the actual trajectory. In order to use PTP 
movement the trajectories need to be well-defined; each of 
the joint angles need to be specified and effected 
simultaneously to allow smooth trajectories.  
 
List of resources (not exhaustive): 
MoveMaster EX robot, Satellite transponder/receiver, 
Interface card for receiver,  PC or compatible, Windows NT 
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4.0 (server), Internet Information Server 4.0, C++, Visual 
C++, Visual Basic, VBscript (for ASP) 
 
d) Advantages and potential uses:  
- Remote satellite feed for Internet users 
- Remote communication 
- Distance learning 
 
e) Conclusion 
- Robot was set up in the actual work environment 
- Communications were established 
- Rigorous testing was done to avoid unnecessary damage 
The project demonstrates the synergy created by combining 
robotic and computing power. On a larger scale this concept 
can be ported to many more pragmatic applications using 
robots. 
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