

1

E-Learning: Case Studies in Web-Controlled Devices and Remote Manipulation

TAREK SOBH, RAUL MIHALI, PUNEET BATRA, AMIT SINGH, SUDIP PATHAK, TOMAS VITULSKIS,
ANDREW ROSCA

School of Engineering and Design, 169 University Avenue, Bridgeport, CT 06601, U.S.A.

Phone: (203) 576-4116, Fax: (203)576-4766
http://www.bridgeport.edu/~sobh

Abstract - Chances are that distance learning will
transparently extend colleges and institutes of education
and could plausibly overtake and turn into a preferred
choice of higher education, especially for adult and working
students. The main idea in e-learning is to build adequate
solutions that can assure educational training over the
Internet, without requiring a personal presence at the degree
offering institution.
The advantages are immediate and of unique importance, to
enumerate a few: Education costs can be reduced
dramatically, both from a student's perspective and the
institution's (no need for room and board, for example); The
tedious immigration and naturalization issues common with
international students are eliminated; The limited campus
facilities, faculty members and course schedules an
institution can offer are no longer a boundary; Working
adults can consider upgrading skills without changing their
lifestyles
We are presenting through this material a sequence of
projects developed at University of Bridgeport and than can
serve well in distance learning education ranging from
simple "hobby" style training to professional guidance
material. The projects have an engineering / laboratory
flavor and are being presented in an arbitrary order, topics
ranging from vision and sensing to engineering design,
scheduling, remote control and operation.

Keywords: distance learning, remote teleoperation, remote
manipulation, web control, e-learning

I. INTRODUCTION

In a supportive effort towards faster distance learning
implementation, we present through this work a sequence
of projects that have been developed and can serve the
process of distance learning education ranging from simple
"hobby" style training to professional guidance material.
The projects have an engineering / laboratory flavor and are
part of ongoing work of the faculty and students of the
Computer Science and Engineering Department of the
University of Bridgeport, and are being presented in an
arbitrary order, topics ranging from vision and sensing to
engineering design, remote control and operation. The
inclination is towards being able to set up physical labs
online allowing students to use equipment / machines
(microscopes, manipulators, for example to handle
substances or various objects), hence the goal of creating

tools to allow engineering lab-based courses to be offered
via distance learning.

II. MOBILE ROBOT CONTROLLED BY A PHONE

In an attempt to add to the many possible ways of
automating and implementing remote engineering, this
project presents a complete, in depth, cost-effective solution
for controlling a robot through phone calls. Various
extension possibilities are being discussed as well
(instructing a robot for vacuum cleaning, changing
switches, moving objects, surveillance, etc).
Mobile Robots have numerous applications: unmanned
exploration, land mine removal, energy plants and
manufacturing factories.
We introduce a cost-effective robot. With the introduction
of video cell phones it will be possible for the user to see
the robotic movement in real-time and possibly perform
educational exercises using a simple interface at a distance.
Examples include “calling” a robot on the way home from
work and have it do various jobs like vacuuming the home
and sprinkling the garden. This could also be done by
logging on to a web server via an internet connected device
and sending signals to the robot [1], or directly sending
specific commands to the robot through cellular phones to a
wireless (or cellular) server at home (with or without a web
connection) (figure 1).

Figure 1: An application of a Robot with a phonechip

We focus on communication with the robot. The main
objective was to make the robots more user friendly and to
be able to communicate with them. Thus, we decided to
design a simple prototype of a robot that can be controlled
via phone - "Phonebot". We considered a design based on a
phone chip
Hardware/Software and Test Equipment Used
Hardware Requirements:
Flex 10K70 Chipset
Talrik II Robot (including the Servo motors and Sensors)
TelePhone Set
Teltone's M-8870-01 Chip
SPST 90-2323, 5V relay switch from RadioShack
3.58MHz Crystal Oscillators (Part #)

2

Variable Power Supply
Resistors, Capacitors and Diodes
Software Requirements:
Altera's MaxPlus II, OrCAD, HTML, CGI/ASP, Java,
Matlab
Test Equipment:
Oscilloscope, Logic Analyzer, Multimeters, Nerd-Kit

Implementation
A call is placed to the Phonebot using either Plain Old
Telephony System (POTS) or a Personal Communication
System (PCS), or by using the telephony server via the
Internet. Once the Phonebot receives the ring, a ring
detector circuit detects it and the call is completed by
establishing a connection between the phone chip and the
FPGA chip (figure 2).
The project was implemented using a top-down process:
- sending a signal through the phone line
 a) Ring Detect and connect phone line
 b) DTMF decoder
- robot control with the FPGA device
 c) Clock Division (VHDL program)
 d) Ring Detect (VHDL program)
 e) Motor Control (VHDL program)
 f) Robot Control (VHDL program)
The final part of the project involved assembling various
parts of Phonebot and combining the different VHDL
modules.

PHO N EBO T

PHO N E RO BO T

Ring
Detect
And Line
Connect

DTM F
Decoder

+

Phone
line

 FPG A (FLEX 10K20/10K70)

Robot
Contro l

M otor /
Sensor
C ontro l

Figure 2: PHONEBOT – Basic Block Diagram

a) Ring Detect and Phone Line Connection
When the phone rings, the telephone company is sending a
ringing signal, which is an AC waveform. The common
frequency used in the United States is 20 HZ and in Europe
it is typically 25 Hz and it can be any frequency between 15
and 68 Hz. Most of the world uses frequencies between 20
and 40 Hz. The voltage at the subscribers end depends upon
the loop length and number of ringers attached to the line; it
could be between 40 and 150 Volts.
The telephone line has only DC (-48V) and/or small signal
AC (audio). In the circuit shown in Figure 3, capacitor C1
blocks the DC and the voltage divider circuit obtained from
the R3 and R2 resistors prevent the low level AC from
having any effect on the circuit.

Figure 3: Phone detect circuit

Specifications
C1 = 1 uf, CR1, CR2, CR3 = 1N914, C2 = 10 uF, R1, R3 =
100K, R2 = 10K
When the telephone rings, it brings about 90V RMS of AC
at 20Hz. When the telephone rings, the capacitor C2 is
charged. Diodes CR1 and CR2 guarantee that the output
(ring detect logic) does not exceed the power supply levels
and prevent any damages to other circuits driven from its
output. Since C2 and R1 have the time constants of 1s, the
output goes low for 1second after the ring stops. This pulse
is to be detected and used for connecting the telephone
circuit by the FPGA chip [2].

b) DTMF Decoder
Dual Tone Multi Frequency (DTMF) signals are used for
speed dialing and replace the conventional rotary dialing
system. These signals correspond to the digits on the dial
pad of any modern touch-tone phone. Each of those touch-
tones is constructed with the combination of two different
frequencies. This information can be utilized to find out
which button was pressed on the keypad and can be used
for various applications. The construction of the signals
according to different frequencies is shown in table 1:

Table 1: Signals related to different frequencis
 High Frequency Values (Hz)

 1209 1336 1477 1633
697 1 2 3 A
770 4 5 6 B
852 7 8 9 C

LowFrequenc
y Values (Hz)

941 * 0 # D
These frequencies can be decoded using precise filters and
then we can decode which digit was pressed depending
upon these decoded frequencies. We used the M-8870-01
DTMF decoder chip to decode this information. The chip
uses a series of low pass and high pass filters to decode the
frequencies. Then it uses a digital detection algorithm and a
code converter to provide its output in the form of four
binary output data [3]. This data is supplied to the FPGA
chip for further use.

FPGA Control
For the controller we used the Altera’s Flex 10K70 chip.
The FPGAs contain arrays of logic cells, and enable
designing real systems to operate at increasingly higher
frequencies [4]. They have the ability to increase
integration, to place more and more electronics in a chip
and use all available gates within the FPGA, thereby
providing cost-effective solutions. The most important

3

factor for selecting this chip is that we can program and
reprogram the device while it is in a system. This provides
us with great flexibility in using the Phonebot. The
Phonebot can be programmed within a few minutes to do
many tasks. Once programmed the robot will have the
“intelligence” to complete the requested task.

c) Clock Division Module
This module divides the 25MHz clock of the Altera’s
University Board into slower clocks so that we can provide
the precise timing for the servo-motors because these
motors work at pulses in the order of milliseconds. The
25MHz clock is divided into 1Mhz, 100Khz, 10KHz, 10Hz
and 1Hz.

d) Ring Detect Module
This module takes its input from the ring detector circuit
and the DTMF decoder, provides output to the relay for
closing or opening the telephone circuit. As soon as a ring
is detected this module provides a 0V signal to the relay
and thus closes the circuit. When it senses a DTMF code for
digit 0, it opens the switch again. We had a small problem
while disconnecting the phone. The FPGA device stored the
code for digit 0 even after it was disconnected and for the
same reason next time we dialed up, it would connect and
disconnect on its own. This problem was resolved by
resetting the signals in the FPGA device on the falling edge
of the SB signal (SB signal goes high when there is a valid
code detected by the DTMF decoder).

e) Motor Control Module
The Phonebot has two servo motors to aid its movement.
First we had to hack these motors to create a DC gearhead
motor. The information on hacking the servos was obtained
from Mekatronix manual for the Talrik II robot. The hacked
servos work on Pulse Width Modulation (PWM). This
module provides the robot with pulses at specific times. If
we provide a pulse for 1 to 1.5ms, then the motor spins in
one direction and if we provide a pulse for 1.5 to 2ms, then
the motor spins in another direction. The pulses have to be
issued in an interval of about 20ms. This module
implements the generation of this timing.

f) Robot Control Module
This module programs the movement of the robot according
to the detected DTMF signals. It determines the path of the
robot and provides a signal for the servo motor control
module controlling the direction and the duration of running
the motors. For example, if we press 7, it moves the robot
in the forward direction for 4 seconds; if we press 8, the
Phonebot moves in the reverse direction for 4 seconds; and
if we press #, Phonebot comes to a complete stop. We also
added few bump switches to the Phonebot. These bump
switches send a high signal to the FPGA when they are
bumped [5]. Depending upon which bumper detects switch
closures, the FPGA device determines where the collision
occurred and issues a signal to the Phonebot to change the
direction of its path.

The final task in the project involved assembling the
different modules together. We had to make a common
ground for the FPGA device, the circuit we designed for the
ring detection and the DTMF decoder [6]. The Altera board
was not detecting the decoded signals produced by the
DTMF decoder until a common ground was implemented.
The main controller program was implemented in structural
format combining the various components.
Instead of the DTMF decoder, a voice encoder/decoder can
be used. Similar to a DTMF decoder, the voice decoder
would recognize certain frequencies and depending upon
those frequencies, the Phonebot can be programmed to do
certain tasks. This feature could also be used for security
purposes. Using more sensors and a visual feedback would
make the Phonebot more animated and will be able to carry
out more tasks. Integrating with the Internet would also add
more access to the Phonebot. A movie showing the
Phonebot can be seen at
http://www.bridgeport.edu/cse/projects/phonebot/index.htm
l, as well as the controlling software of the robot

III. INTERNET BASED SOFTWARE LIBRARY
FOR THE SIR-1 SERIAL PORT CONTROLLED

ROBOT

The idea of web based control has been always envisioned
from the first days of networked computing. Being able to
execute operations from remote locations [7], with feedback
of some sort, it is an active and desired choice in many
fields, such as robotic manipulation. This project presents a
complete web based control solution for a manipulator, thus
exemplifying one of the possibilities that remote
automation encompasses.
A complex API for the control of the SIR-1 robot (figure 4)
has been developed. Available functions include
direct/inverse kinematics computation, serial port
communication interfacing, and link speed control. The
API can support an indefinite number of port connections
and thus control a theoretically indefinite number of SIR-1
robots [8]. For the purpose of this project, two robots with
their respective controllers have been used.
Due to the high availability of serial ports on standard PCs,
this API can be deployed virtually anywhere and in any
environment, including the Internet, on any applications.

Figure 4: The SIR-1 Robot

Programming Generalities
The SIR-1 controller accepts commands from the serial
interface as CRLF-terminated ASCII strings. Prior to
issuing any command, a handshaking sequence has to be
performed. Once the character ESC has been sent, the
controller will respond with an 8-bit integer. The respective
bits indicate the status of each link (1 for active and 0 for

4

inactive). This is the only status update the controller will
send throughout the process.
Commands are in the form:
<command char> <steps for link 1>, <steps for link 2>, …
<steps for link 6>
For example, in order to move the first link 100 steps, the
following string would be sent to the serial port:
M 100, 0, 0, 0, 0, 0 <CR><LF>
In this case, the trailing zeros can be left out.
Programming the controller via the serial port is thus
reduced to assembling a command string in a buffer and
sending it to the port character by character.

Web Usable Enhancements Library Set
Steps-degrees conversion: In order to control link
movement by degrees rather than steps, a simple
proportional correspondence between the number of steps
each link can move and the angle it covers has been
implemented [9].
Inverse Kinematics: Inverse kinematics functionality has
been implemented. Link movement is no longer controlled
only by angle, but also by absolute rectangular coordinates.
Programming Platform: A Visual Basic port of the library
is implemented. This allows for web deployment and robot
control over the Internet.
Function Library Abstract: Below is a summary of all
functions present in the library.
int SIR1_Handshake();
Initiates communication with robot. This function must be
called before any other command can be issued.
int SIR1_MoveLink(link L, int degrees);
Moves one link a specified number of degrees. If L = G (the
gripper is moved), the integer degrees specifies millimeters
of gripper opening.
int SIR1_MoveRobot(int AlphaBase, int AlphaShoulder, int
AlphaElbow, int AlphaPitch, int AlphaRoll, int
PercentGripper);
Moves all links a specified number of degrees.
int SIR1_GotoXYZ(int X, int Y, int Z, int PITCH, int ROLL);
Moves the center of the gripper fingers to coordinates
X, Y, Z, with a specified roll and pitch of the gripper
segment.
void SIR1_SetSpeedLinks(SPEED B, SPEED S, SPEED E,
SPEED P, SPEED R, SPEED G);
Sets the speed of each link to a specified value (valid values
are 0 to 7, of type SPEED defined at the top of sir.h).
int SIR_SetSpeedRobot(SPEED S);
Sets the speeds of all links to the specified value.
void SIR1_Pause(int TIME);
Pauses robot for 1/100 * TIME seconds. No return value
int SIR1_LinkPosition(link L);
Returns the position of each link (in degrees) relative to the
absolute system of coordinates defined for the robot. For
the gripper the percentage of opening is returned.
int SIR1_IsActive(link L);
Checks to see if link L is active

Although the SIR-1 is a relatively simple robot, it can
accomplish complex tasks, due to its high repeatability (0.6
mm according to specifications).
The project clearly demonstrates the endless possibilities of
using such a robot as SIR-1 for web/internet based remote
automation through the implemented API, from pressing
buttons, flipping switches or remotely controlling any other
similar interfaces, to distance learning applications.

IV. INTERNET BASED COMPUTER VISION
FRAMEWORK FOR SECURITY, SURVEILLANCE

AND TRACKING APPLICATIONS

This project presents a possible framework to easily design
and implement vision systems that perform useful real-time
tasks using only off-the-shelf hardware, typically available
through general consumer stores.

1) The Problem Domain
The general goal of any computer system is detection and
identification of object models in an input image or stream
of images [10]. Such general tasks are typically difficult to
achieve with satisfactory speed and accuracy. Depending on
the application, certain assumptions can be made about
input images. For example, these assumptions could
include: Lighting condition in input images is known and/or
constant; Object orientation in the input image is known; It
is known that objects are not rotated out of the vision
plane; It is known that objects are not rotated in the vision
plane; Object is rigid; Object has constant shape; Object
scale is known; Background of image scene is known;
Sequence of images is available; (And /or possibly several
others). Such assumptions make it possible to build vision
systems that operate in real time and give acceptable
accuracy [11].

2) Architecture
Each algorithm dealing with a well-defined and solvable
problem is implemented as a building block. The system
can be built out of blocks connected using a plain pipe
architecture where the output of a block is fed to the input
of other blocks. Each system would have image acquisition
and output analysis with vision processing implemented in
between. This allows for a quick system implementation,
without modifying underlying components. Components
can be enhanced or replaced without affecting other parts of
the system taken into consideration [12].
Generally, each system would consist of three large
components: Early processing, Feature extraction and
Feature matching
Early processing is the stage in which images are enhanced
without trying to interpret them. Components that can be
used in this stage include: Gaussian filters, Histogram
normalization and Color filtering
Feature extraction selects certain feature points in the
image that are relevant. Sample components within this
module include: Edge detection, Line or ellipse detection,

5

Region growing, Region splitting and Minmax point
extraction
Feature matching is the task of determining if model
features are present in the feature set extracted from the
image and how well they match.

3) Sample System Requirements
A system has to detect a face in the scene and follow it.
Scaling, rotation in the vision plane are allowed. Small to
medium variation in lighting is tolerated. Background is
arbitrary. Rotation out of the vision plane and significant
lighting variations are not allowed. The diagram of
consecutive steps can be formulated as follows:
Acquisition -> Color filtering -> Conversion to
Monochrome -> Gaussian blur -> Thresholding ->
MinMax feature extractor-> Heuristic significant feature
detection -> Feature matcher -> Match result
The steps from Color Filtering to Thresholding constitute
the early vision processing. They only enhance the image
for later processing without extracting any higher-level
feature data.
The color filter removes regions that have colors considered
not possible in the model. For example, the sky and forest
background are removed in this step. Conversion to
monochrome makes the image suitable for processing with
other algorithms. Gaussian blur removes noise and many
small, insignificant image features. It significantly lessens
the number of features returned by the feature matcher.
Thresholding removes parts of the image that are too dark,
and therefore cannot contain objects for detection. Values
for color filter, threshold and Gaussian blur can be specified
at design time or extracted from the model.
The last four steps constitute high-level vision processing.
Feature extractor scans the image and finds parts of the
image that are most significant for detection. In this
sample system, MinMax search is chosen because of its
speed and simplicity. Local minimum and maximum points
of image are selected as the most important points and used
in the feature-matching algorithm. Applying a heuristic
filter can filter features that are not relevant for detection.
Relevance of a feature in this filter is defined as the energy
carried by the min or max point. Energy is the summation
of pixel values that are affected by that minmax point. The
feature matcher performs optimized exhaustive search
between features detected in the image and in the model
and assigns each pair of combinations a match value.
Matching is based on evaluating angles between features,
proportions of distances and proportions of amplitudes. In
this way, the matching function remains effective if
rotations in the vision plane, scaling and uniform lighting
variations are present. The combination with the highest
match value is chosen as a possible detection candidate. If
the match value is higher than threshold value, detection is
successful; otherwise, the model is assumed not present in
the image.

5) System Test Results
The original image (figure 5) has been passed through color
filtering, blurring, thresholding, minmax feature extraction
and heuristics to remove less significant features (figure 6).

Figure 5: Original Image

Figure 6: Heuristics to remove less significant features.

The importance of a feature is measured in terms of the
energy it carries. After filtering, the remaining features are
significant and the combinations of all of them can be
examined quickly. Detections happen in less than one
second using a Pentium PC and VGA resolution color
images when detecting one model. Lower resolution
images are suficient for many applications, therefore the
system could be used in real time for the detection of more
than one model [13].

6) Possible extensions
The modular design of the framework allows easy
modifications and extensions to the system, such as using
the system as a web based robotic eye that can follow faces.
Sample modifications to improve the quality of detection
include Fourier filtering and edge enhancement in early
processing. In late processing, different feature extractors
can be used – such as Hough transforms based methods,
line following, snakes, region splitting and region growing.
The matcher can be efficiently replaced with neural
networks or other heuristics instead of exhaustive search.
Background subtraction and light elimination could also
improve detection rates. In order to further enhance
functionality, the system could be extended with multi
model matching, which would make possible the detection
of objects rotated out of the vision plane.

V. INTERNET CONTROLLED SATELLITE
TRANSPONDER (USING A REMOTELY

CONTROLLED ROBOTIC MANIPULATOR)

a) Objective
To be able to control a satellite transponder from a remote
location by using a robotic manipulator to mechanically
change controls on the receiver or a UHF/infrared remote
control of the receiver.
The reasons a robot was used to mechanically use the
controller unit instead of hard-wiring the controller unit (or

6

the UHF remote control) to the server were: (1) The process
of hard-wiring can permanently damage the expensive
controller unit and subsequently render the transponder
useless [14,15]; (2) The robot can be easily reprogrammed
to adapt to different controller equipment, such as working
with a remote controller.
To establish communication between the remote client and
the robot via the server and enable the robot to carry out the
desired commands without exceeding its limited workspace
or without running into obstacles, the following tasks
needed to be implemented:
- Interfacing between robot and server (RS-232)
- Interfacing between receiver and server
- Interfacing between server and internet
- Teaching the robot (trajectory planning and generation)
A flowchart of the system is shown in figure 7.

REMOTE
PC

SATELLITE
TRANSPONDER

RECEIVER

Remote
Control

 SERVER
Robotic
Manipulator

RS-232

Video
Interface

INTERNET

Figure 7: System Schematics

The interfacing between the robot and the server is carried
out via the RS-232 serial port. The robot’s controller box
simply receives commands as ASCII strings through the
RS-232 connection. An important issue to notice is the one-
way communication (i.e. once the computer issues
commands to the robot, the controller does not send back
any signal to indicate the execution status of a command)
[16]. To overcome this, it is important that a flawless
trajectory be planned during the initialization of the robot,
implemented so that obstacles do not pose a problem.
Sample commands that can be issued to the robot: GC:
Closes the gripper, GO: Opens the gripper, NT: Nest the
robot
The interfacing between the receiver and the server is done
through a special interface card that takes the analog feed
from the transponder’s receiver and converts it into a digital
format ready to be broadcast over the Internet. The PC card
receives a feed through a standard coaxial cable. The
transponder can point at different ‘look-angles’ and at each
look-angle it can receive feeds at numerous frequencies.
The interfacing between the server and the Internet is done
through a simple secure web server to carry HTTP requests
from clients. It is important to ensure that only one
individual is controlling the robot at the same time.
Lastly, the robot must be ‘taught’ about its surroundings
and the environment that it will be operating in. This can be
done by fixing the position of the remote control unit and
defining its position relative to that of the robot. This allows

the robot to ‘know’ where the controller unit is and where
particular controls on the unit are.

b) Constraints and limitations:
- Limited set of commands that the robot’s controller box
can understand
- One-way communication between the server and the
robot’s controller
- The web server’s clients have no access to the serial port,
which is the only way of talking to the robot
- Time constraints
- Compatibility issues force use of a certain operating
system

How were the above limitations overcome to achieve the
objective?
The following tasks had to be carried out:
 Configure the server-to-server HTTP requests
- Write software allowing HTTP clients to issue commands
to the robot via the RS-232 port
- Write software to initialize the robot and define the work
area
Server configuration was not complicated, resulting in
setting up a Windows NT server with IIS, for processing
requests and enabling security authentication and control.
An ActiveX control needed to be written to allow Active
Server Pages to run executables on the server itself.
An executable ‘writetoport.exe’ did the simple task of
taking command-line arguments and sending these
arguments to the robot as commands via the serial port. The
application was written using Visual Basic.

c) Robot initialization
As mentioned previously, robot-initialization is vital to
ensure error-free operation, especially since the robot’s
controller unit sends back no signals to the server itself. The
position of the remote control needs to be fixed and
positions within the robot’s work area need to be defined.
There are two basic types of movements: Point to Point
(PTP) movement, XYZ movement
PTP movement involves specifying the joint variables (the
joint angles in this case) and changing them according to
the desired position of the robot.
XYZ movement involves moving the end-effector in an X,
Y, or Z plane. The joint variables are calculated based upon
position and desired motion and accordingly changed and
recalculated at every point during the trajectory [17].
XYZ movement is much slower and inaccurate than PTP
movement since the robot needs to perform repeated
calculations to determine the desired position. Hence PTP
movement was used to minimize error between the desired
trajectory and the actual trajectory. In order to use PTP
movement the trajectories need to be well-defined; each of
the joint angles need to be specified and effected
simultaneously to allow smooth trajectories.

List of resources (not exhaustive):
MoveMaster EX robot, Satellite transponder/receiver,
Interface card for receiver, PC or compatible, Windows NT

7

4.0 (server), Internet Information Server 4.0, C++, Visual
C++, Visual Basic, VBscript (for ASP)

d) Advantages and potential uses:
- Remote satellite feed for Internet users
- Remote communication
- Distance learning

e) Conclusion
- Robot was set up in the actual work environment
- Communications were established
- Rigorous testing was done to avoid unnecessary damage
The project demonstrates the synergy created by combining
robotic and computing power. On a larger scale this concept
can be ported to many more pragmatic applications using
robots.

Bibliography
[1] Tanenbaum, Andrew S. Computer Networks, New
Jersey, Prentice Hall.
[2] Meyers, Robert A. Encyclopedia of
Telecommunications, Academic Press Inc.
[3] Skahill, Kevin. VHDL for Programmable Logic,
Addition-Wesley, 1996.
[4] Yalamanchili, Sudhakar. VHDL Starter's Guide,
Prentice Hall, 1998.
[5] Doty, Keith L. TALRIKII Assembly Manual,
MekatronixTM, 1999.
[6] Internet: ftp://ftp.teltone.com/pub/8870.pdf
[7] Ferrell W. R., Sheridan T. B.; Supervisory control of
remote manipulation; IEEE Spectrum, October; 81-88;
1967
[8] Rastogi A., Milgram P., Drascic D., and Grodski J. J.
[1993] Virtual Telerobotic Control Proceedings of the
Knowledge-Based Systems & Robotics Workshop, Nov.
14-17, 1993; 261-269
[9] Rastogi A. [1995] Design of an interface for telerobotic
in unstructured environments using augmented reality,
M.A.Sc. Thesis, Department of Industrial Engineering,
University of Toronto.
[10] A. Kosaka, M. Meng, and A. C. Kak, Vision-guided
mobile robot navigation using retroactive updating of
position uncertainty,' Proceedings of 1993 IEEE
International Conference on Robotics and Automation,
Vol.2, pp.1-7, 1993.
[11] A. Kosaka and A. C. Kak, Fast vision-guided mobile
robot navigation using model-based reasoning and
prediction of uncertainties,' CVGIP--Image Understanding,
Vol. 56, No. 3, November, pp.271-329, 1992.
[12] A. C. Kak, K. M. Andress, C. Lopez-Abadia, M.S.
Carroll, and J. L. Lewis, Hierarchical evidence
accumulation in the PSEIKI system and experiments in
model-driven mobile robot navigation, in Uncertainty in
Artificial Intelligence (M. Henrion, R. Shachter, L. N.
Kanal, and J. Lemmer, Eds), pp.353-369, Elsevier, North-
Holland, 1990.
[13] P. Isto, Path Planning by Multiheuristic Search via
Subgoals, Proceedings of the 27th International Symposium
on Industrial Robots, CEU, Milan, 1996, 712-726.

 [14] A. Li and G. Crebbin. Octree encoding of objects from
range images. Pattern Recognition, 27(5):727-739, May
1994.
[15] W.E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm. In
Computer Graphics (SIGGRAPH '87 Proceedings), volume
21, pages 163-169, July 1987.
[16] S-F Chang, J.R Smith, H.J. Meng, H. Wang, and D.
Zhong. Finding images/video in large archives. D-Lib
Magazine, February 1997.
[17] Stavros Christodoulakis and Peter Triantafillou.
Research and development issues for large-scale
multimedia information systems. ACM Computing Surveys,
Dec 1995.

