Discrete Event Control for Inspection and Reverse Engineering

Tarek M. Sobh, Mohamed Dekhil, and Jonathan C. Owen *

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

Abstract

We address the problem of intelligent sensing
in this work. In particular, we use discrete
event dynamic systems (DEDS) to guide the
sensing of mechanical parts for industrial in-
spection and reverse engineering.

1 Introduction

Reverse engineering is essentially the problem of con-
structing a model from sensed information. To do so
within the tolerances needed in most manufacturing ap-
plications requires sophisticated sensing such as with a
coordinate measuring machine (CMM). A CMM uses a
robot arm to move a relatively delicate sensor in contact
with the object to be sensed. To navigate this sensor
efficiently and without collision requires some informa-
tion about the object to be sensed. In an inspection
situation, this information is typically the CAD model
from which the part was manufactured. In a reverse
engineering situation, the CAD model is not available,
and this information must come from some other form
of non-contact sensing such as intensity or range sen-
sors. This information will typically be less accurate
than the original CAD model unless considerable time
and expense is spent on non-contact sensing. A robust
control system can be used to make up for this.

Unifying the control of hybrid systems can pose a
difficult problem. We feel that discrete event dynamic
systems (DEDS) are very appropriate for the control of
such systems. We have implemented such a strategy
and introduce the dynamic recursive context for finite
state machines (DRFSM) as a new DEDS tool for utiliz-
ing the recursive nature of the mechanical parts under
consideration.

*This work was supported by ARPA under ARO grant num-
ber DAAH04-93-G-0420, DARPA grant N00014-91-J-4123, NSF
grant CDA 9024721, and a University of Utah Research Commit-
tee grant. All opinions, findings, conclusions or recommendations
expressed in this document are those of the authors and do not
necessarily reflect the views of the sponsoring agencies.

1050-4729/94 $03.00 © 1994 IEEE

2545

CAD Modelling

)

Manufacturing

"
\ .,
oy
(81 {(-{l 4

Figure 1: A Closed Loop System

2 Reverse Engineering and In-
spection System

An integrated CAD/CAM/sensing system can be de-
scribed as a closed loop (see Figure 1). We have de-
veloped a sensing system for reverse engineering which
uses 2-d and 3-d vision to construct a CAD model of a
part[4]. This sensing system interfaces with the Univer-
sity of Utah’s @_1 modelling system which has a semi-
automatic interface to automated manufacturing equip-
ment.

Two-dimensional image processing routines are used
to segment an image which contains an industrial part,
and find closed contours in a pair of images (motion pro-
vided by robot arm). A stereo vision algorithm is used
to obtain three dimensional data on the contours, and
fitting and constraints are used to build a CAD model
from the data. One of the resulting reverse-engineered
parts is shown in Figure 2. The models used to man-
ufacture these parts are shown in Figure 3. Note that
the original model was not used in deriving the reverse
engineered model, only sense data from the part itself.

Although the part is quite similar to the original, we
would like to “close the loop” and use automated in-
spection with a CMM for a more accurate representa-

Figure 2: Original and Vision-Reverse Eng’d Parts

tion. To do this, we will inspect the original part, using
our vision-derived model as the baseline. Doing so will
require a robust control system as is described in the
following sections.

3 DEDS Control for Inspection

DEDS are dynamic systems in which discrete events oc-
cur. If modeled by state machines (see Figure 4), these
discrete events would trigger state transitions. These
systems are typically asynchronous, and can be used as
control models for hybrid systems which have continu-
ous, discrete and symbolic aspects.

The applications of this work are numerous: auto-
matic inspection of mechanical or electronic compo-
nents, reproduction of mechanical parts, etc. The expe-
rience gained in applying DEDS to the inspection prob-
lem will allow us to study the subdivision of the solution
into reliable, reversible, and an easy-to-modify software
and hardware environments.

DEDS are usually modeled by finite state automata
with partially observable events. Subsets of transitions
can be disabled or enabled, depending on the applica-
tion. Our approach is to use DEDS to drive a semi-
autonomous visual sensing module which is capable of
making decisions about the state of the exploration (e.g.
the relation of the CMM probe to the part). This mod-
ule provides both symbolic and parametric descriptions
which can be used to interrupt the exploration or move
to a new mode of exploration.

2546

7 K& £ QYA
Wi '\x—-.o; u—» >

.,I

Figure 3: Original and Vision-Reverse Eng’d Models

o. <oading part>

<interrupt>

<inspecting>

Figure 4: A Simple FSM

— & Ny 1
/&5; D
{ J

Figure 5: Bad Approach Vector

3.1 Modeling an Observer

The tasks that the autonomous observer system exe-
cutes can be modeled efficiently within a DEDS frame-
work. We use the DEDS model as a high level structur-
ing technique to preserve and make use of the informa-
tion we know about the way in which a mechanical part
should be explored. The state and event description is
associated with different visual cues; for example, ap-
pearance of objects, specific 3-D movements and struc-
tures, interaction between the touching probe and part,
and occlusions. A DEDS observer serves as an intelli-
gent sensing module that utilizes existing information
about the tasks and the environment to make informed
tracking and correction movements and autonomous de-
cisions regarding the state of the system.

In order to know the current state of the exploration
process we need to observe the sequence of events oc-
curring in the system and make decisions regarding the
state of the automaton. State ambiguities are allowed to
occur, however, they are required to be resolvable after a
bounded interval of events. The goal will be to make the
system a strongly output stabilizable one and/or con-
struct an observer to satisfy specific task-oriented visual
requirements. Many 2-D visual cues for estimating 3-D
world behavior can be used. Examples include: image
motion, shadows, color and boundary information. The
uncertainty in the sensor acquisition procedure and in
the image processing mechanisms should be taken into
consideration to compute the world uncertainty.

Foveal and peripheral vision strategies could be used
for the autonomous “focusing” on relevant aspects of
the scene. Pyramid vision approaches and logarithmic
sensors could be used to reduce the dimensionality and
computational complexity for the scene under consider-
ation.

3.2 Error States

We can utilize the observer framework for recognizing
error states and sequences. The idea behind this recog-
nition task is to be able to report on visually incorrect
sequences. In particular, if there is a pre-determined ob-
server model of a particular exploration task under ob-
servation, then it would be useful to determine if some-
thing goes wrong with the exploration actions. The goal

2547

\

Figure 6: Probe diameter too large

of this reporting procedure is to alert the operator or au-
tonomously supply feedback to the exploring robot so
that it can correct its actions.

Some examples of errors that might occur while ex-
ploring based on a reverse engineered model include:

o occlusions between the observer camera and the part
or probe.

e inappropriate approach vector position or orientation
(see Figure 5)

¢ inappropriate probe size (see Figure 6).
e motion too rapid.

o motion too slow (“frozen” or “timeout”).

The correct sequences of automata state transitions can
be formulated as the set of strings that are acceptable by
the observer automaton. This set of strings represents pre-
cisely the language describing all possible visual task evolu-
tion steps.

4 DRFSM

The Dynamic Recursive Context for Finite State Ma-
chines (DRFSM) is a new form of DEDS which is specifi-
cally adapted to representing multi-level recursive processes.
Multi-level processes are any tasks which are done repeti-
tively with different parameters.

In our problem domain of machined parts, we can use
DRFSM to exploit the recursive nature of many machined
parts. Many machined features have similar exploration
strategies. By using the same strategy for different features
within a complicated part, we can reduce the number of
control states needed to explore it to a manageable amount.

4.1 Definitions

¢ Variable Transition Value: Any variable value that
depends on the level of recursion.

e Variable Transition Vector: The vector contain-
ing all variable transitions values, and is dynamically
changed from level to level.

o Recursive State: A state calling another state re-
cursively, and this state is responsible for changing the
variable transition vector to its new value according to
the new level.

¢ Dead-End State: A state that does not call any other
state (no transition arrows come out of it). In DRFSM,
when this state is reached, it means to go back to a

T

L>10

Ve VU] V2| V3] Ve | vs
Level | 12 15 | 003§ 170 § 25
Lever2 | 10 | 12 | 007] 100 | 35
Lev3| 6 | 8 [oas|s0 |40

Figure 7: A Simple DRFSM

previous level, or quit if it is the first level. This state is
usually called the Error-trapping state. It is desirable
to have several dead-end states to represent different
types of errors that can happen in the system.

4.2 DRFSM Representation

We will use the same notation and terms of the ordinary
FSMs, but some new notation to represent recursive states
and variable transitions. First, we permit a new type of
transition, as shown in Figure 7; (from state C to A), this is
called the Recursive Transition (RT).

A recursive transition arrow (RTA) from one state to an-
other means that the transition from the first state to the
second state is done by a recursive call to the second one after
changing the Variable Transition Vector. Second, the transi-
tion condition from a state to another may contain variable
parameters according to the current level, these variable pa-
rameters are distinguished from the constant parameters by
the notation V(parameter name). All variable parameters of
all state transitions constitute the Variable Transition Vec-
tor. It should be noticed that nondeterminism is not al-
lowed, in the sense that it is impossible for two concurrent
transitions to occur from the same state. Figure 8 is the
equivalent FSM representation (or the flat representation)
of the DRFSM shown in Figure 7, for three levels, and it il-
lustrates the compactness and efficiency of the new notation
for this type of process.

4.3 A Graphical DRFSM Interface

In developing the framework for reverse engineering, it has
proven desirable to have a quick and easy means for modify-
ing the DRFSM which drives the exploration process. This
was accomplished by modifying an existing reactive behav-
ior design tool, GlJoe, to accommodate producing the code
of DRFSM DEDS.

GlJoe was designed by Mark Bradakis at the University
of Utah[1]. It allows the user to graphically draw finite state
machines, and output it as C code. The graphical user in-
terface allows the user to place states and transitions with a
mouse. Transitions can be labelled with boolean combina-
tions of symbols, such as “A and B or C”. When the state
machine is complete, the user selects a start state and clicks
a “Compile” button to output C code which duplicates the

2548

12<x<15

7N\

02<e<0S

w> 120

W<x<12 77
F)
n,z<c<o.s\/

vacecos N/

Figure 8: Flat Representation of a Simple DRFSM

structure of the machine. The machine can be saved and
later modified for different applications.

The code output by the original GlJoe has an iterative
structure that is not conducive to the recursive formulation
of dynamic recursive finite state machines. Therefore, it was
decided to modify GlJoe to suit our needs. Modifications to
GlJoe include:

e Output of recursive rather than iterative code to allow

recursive state machines.

Modification of string parsing to accept recursive tran-
sitlon specification.

Encoding of an event parser to prioritize incoming
events from multiple sources.

Implementation of the variable transition vector (VTV)
acquisition (when making recursive transitions.)

The event parser was encoded to ensure that the automa-
ton makes transitions on only one source of input. Each new
event type requires the addition of a suitable event handler.
New states and transitions may be added completely within
the GlJoe interface. The new code is output from GlJoe
and may be linked to the exploration utilities with no mod-
ifications. The code produced by the machine in Figure 9
was tested using a text interface before being linked with
the rest of the experimental code.

Future modifications
may include the addition of “output” on transitions, such
as “TouchOccurred/UpdateModel”, allowing easy specifica-
tion of communication between modules. It should be clear,
however, that the code generated by GlJoe is only a skeleton
for the machine, and has to be filled by the users according
to the tasks assigned to each state.

In general, GIJoe proved to be a very efficient and handy
tool for generating and modifying such machines. By au-
tomating code generation, one can reconfigure the whole ex-
ploration process without being familiar with the underlying
code (given that all required user-defined events and mod-
ules are available).

5 Experiment

In conducting our experiments, we use a B/W CCD camera
mounted on a Puma 560 robot arm (see Figure 10), and

Ty

whiol ved
Tinae.
I 0t Vimalt
Tind0e.
ieionrctlon
eioPrablon
W

Figure 9: GlJoe Window w/DRFSM

Figure 10: Experimental Setup

2549

Figure 11: The DRFSM used in the experiment

simulate the operation of a CMM probe. Control signals
that were generated by the DRFSM were converted to simple
English commands and displayed to a human operator so
that the simulated probe could be moved.

In order for the state machine to provide control, it must
be aware of state changes in the system. As exploration takes
place, the camera supplies images that are interpreted by a
set of 2D and 3D vision processing algorithms and used to
drive the DRFSM. These algorithms are described in greater
detail in a technical report [4], but include thresholding, edge
detection, region growing, stereo vision, etc. The robot arm
is used to position the camera in the workplace and move in
the case of occlusion problems. Our latest experiments used
the robot and GlJoe-generated automata. One of them is
described below.

The DRFSM generated by GlJoe is shown in figure 11.
This machine has the following states:

o A: The initial state, waiting for the probe to appear.
e B: The probe appears, and waiting for it to be close.

L«Close” is a relative measure of the distance between the

e C: Probe is close, but not on feature.

¢ D: The probe visually appears to be on feature but
physical touch with the CMM machine has not oc-
curred.

o E: Physical touch has happened. If the current feature
represents a closed region, the machine goes one level
deeper to get the inner features by a recursive call to
the initial state after changing the variable transition
parameters. Otherwise, the machine looks for another
feature on the same level.

o F: This state is used to solve any vision problem hap-
pens during the experiment. For example, if the probe
is occluding one of the features, then the camera posi-
tion can be changed to solve this problem.

o ERRORI1: There is time limit for each part of this
experiment to be done. If one of the modules does
not finish within the limit, the machine will go to this
state, which will report the error and terminate the
experiment.

A part similar to the fuel pump cover from a Chevrolet
engine was used in the experiment to test the exploration
automaton. This piece offers interesting features and has a
complex recursive structure. The piece was placed within
view of the camera. Lighting in the room was adjusted so
as to eliminate reflection and shadows on the part to be
explored.

Some of the images from the experiment are shown in
sequence in Figure 12.

6 Conclusions

Discrete event dynamic system control has been explored
for the reverse engineering problem. We have introduced a
new context for use with problems which have a recursive
aspect, such as machined parts. An interactive package has
been developed which allows a user to graphically generate
DRFSM automata. Experiments have been performed in the
domain of inspection and reverse engineering where DRFSM
provide robust control.

References

[1) Brabakis, M. J. Reactive behavior design tool. Mas-
ter’s thesis, Computer Science Department, University
of Utah, January 1992.

{2] NERODE, A., AND REMMEL, J. B. A model for hybrid
systems. In Proc. Hybrid Systems Workshop, Mathemat-
ical Sctences Institute (May 1991). Cornell University.

[3] OzvEREN, C. M. Analysis and Control of Discrete Event
Dynamic Systems : A State Space Approach. PhD thesis,
Massachusetts Institute of Technology, August 1989.

SoBH, T., OwWEN, J., JAynEs, C., DEKHIL, M., AND
HeNDERSON, T. [ntermediate results in active inspec-
tion and reverse engineering. C.S. Dept. UUCS-93-014,
Umiversity of Utah, Salt Lake City, Utah, USA, June
1993.

[4

probe and the current feature, and is specified using the VTV.

2550

State A: NoProbe State B: ProbeFar

State C: ProbeClose State D: ProbeOnFeature

State E: TouchedFeature State A: NoProbe

State A: NoProbe State C: ProbeClose

State D: ProbeOnFeature State E: TouchedFeature

Figure 12: Cover Sequence

