Proceedings of the 1996 IEEE international
Conference on Control Applications
Dearborn, Mi * September 15-18, 1996

MP0O6 4:20

- Commanding Sensors and Controlling Indoor Autonomous
Mobile Robots

Mohamed Dekhil{, Tarek M. Sobh?, and Alexei A. Efros’ !

f Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

i Robotics, Intelligent Sensing and Control (RISC) Laboratory
Department of Computer Science and Engineering
University of Bridgeport
Bridgeport, CT 06601

Abstract

Any sensory system can be viewed as a passive or dumb el-
ement which provides raw data. It can also be viewed as
an intelligent element which returns “analyzed” information.
Finally, it can be viewed as a commanding element which
sends commands to the physical system. Each of these views
is used in different situations and for different tasks. Com-
manding sensors are an extension to the logical sensor ap-
proach in which a mapping from events to actions is added
to the sensor model.

In a previous paper, we proposed a sensor-based distributed
control scheme for mobile robots along with several simula-
tion results [1]. In this paper, the application of this scheme
to control a real mobile robot is presented and the results of
several experiments are discussed. A server-client model is
used to implement this scheme where the server is a process
that carries out the commands to be executed, and each client
is a process with a certain task. The logical sensor approach
is used to model the sensory system which provides differ-
ent levels of data representation with tolerance measures and
analysis.

1. Introduction

In any closed-loop control system, sensors are used to pro-
vide the feedback information that represents the current sta-
tus of the system and the environmental uncertainties. The
sensors used in most control systems are considered to be
passive elements that provide raw data to a central controller,

1This work was supported in part by The Advanced Rescarch Projects
Agency under Army Research Office grant number DAAH04-93-G0420,
and NSF grant CDA 9024721. All opinions, findings, conclusions or rec-
ommendations expressed in this document are those of the author and do
not necessarily reflect the views of the sponsoring agencies.

0-7803-2975-9/96/$5.00 © 1996 IEEE 199

The central controller computes the next command based on
the required task and the sensor readings. The disadvantage
of this scheme is that the central controller may become a
bottleneck when the number of sensors increases which may
lead to longer response time. In some applications the re-
quired response time may vary according to the required task
and the environment status. For example, in an autonomous
mobile robot with the task of reaching a destination posi-
tion while avoiding unknown obstacles, the time to reach to
the required position may not be important, however, the re-
sponse time for avoiding obstacles is critical and requires fast
response. Fast response can be achieved by allowing sen-
sors to send commands directly to the physical system when
quick attention is required.

In this work, several controllers (clients) are working in par-
allel, competing for the server. The server selects the com-
mand to be executed based on a dynamically configured pri-
ority scheme. Each of these clients has a certain task, and
may use the sensor readings to achieve its goal. A spe-
cial client with the task of avoiding obstacles is assigned the
highest priority. The clients may also aquire the current state
of the system and the command history to update their con-
trol strategy.

The logical sensor approach [2, 3], which we used to model
the sensory system, allows flexible and modular design of the
controllers. It also provides several levels of data abstrac-
tion and tolerance analysis based on the sensor type and the
required task. This approach is used to build high-level re-
quests which may be used by the application programs.

2. Related Work

There has been a tremendous amount of research in the area
of sensor-based control, including sensor modeling [4, 5, 6],

multisensor integration [7, 8, 9], and distributed sensing {10,
11, 12}.

The idea of smart sensing was investigated by several re-
searchers. Yakovleff et al. [13] represented a dual pur-
pose interpretation for sensory information; one for colli-
sion avoidance (reactive control), and the other for path plan-
ning (navigation). The selection between the two interpreta-
tions is dynamic depending on the positions and velocities
of the objects in the environment. Budenske and Gini {14]
addressed the problem of navigating a robot through an un-
known environment, and the need for multiple algorithms
and multiple sensing strategies for different situations.

Our proposed control scheme is similar to Brooks’ subsump-
tion architecture [15, 16] in that the controller is decomposed
into parallel task achieving behaviors rather than information
processing modules. However, Our control scheme is differ-
ent than Brooks’ in the way the parallel tasks are arranged
and executed. In the subsumption architecture, layers of con-
trol system are built to let the robot operate at increasing lev-
els of competence. These layers are built as concurrent mod-
ules that communicate over low-bandwidth channels. Our
proposed scheme on the other hand, the control modules are
placed at the same level but with different priorities. Differ-
ent behaviors are achieved by changing the priorities among
these modules.

It should be noted that the main thrust of this paper is the con-
trol framework itself and the concept of commanding sensors
and their use in building higher-level controllers. In other
words, we are not proposing any new algorithms for colli-
sion avoidance or navigation for example, but we can use any
available algorithm, such as in [17, 18], to build the required
clients within this framework.

3. The Proposed Control Scheme

The robot behavior can be described as a function F that
maps a set of events £ to a set of actions .4. This can be ex-
pressed as:

F E-——A

The task of the robot controller is to realize this behavior. In
general we can define the controller as a set of pairs:

M (en’ an)}

{(e1,a1), (e2,a2), ..

wheree; € £,and a; € A

The events can be defined as the interpretation of the raw data
perceived by the sensors. Let’s define the function 7" which
maps raw data R to events £:

T-R—E&

200

N H H obstacle

H T
H High-level ¥ H

Raw Data] . Information : Behavior Actions
: Distance = 1.31in | N will hitan Selection Change |
: ! H e

Dumb Sensor

Intelligent Sensor

Controliing Sensor |

Figure 1: Three levels to view a sensor module.

The functions 7 and F can be closed form equations, lookup
tables, or inference engine of an expert system. This depends
on the kind of application and the complexity of each trans-
formation.

Figure 1 shows the relationship between the three levels of
abstractions for sensory systems in terms of the functions 7
and F.

The dumb sensor can be used as a source for the feedback in-
formation required by the control system. It can be also used
to gather measurements to construct a map for the surround-
ing environment. The process that uses a dumb sensor as a
source of information needs to know the type of that sensor,
the format of the data the sensor returns, and the location of
the sensor, to be able to interpret the perceived data. The in-
telligent sensor may be used for monitoring activities. The
process that uses an intelligent sensor needs to know only
the event domain and maybe the location of the sensor. On
the other hand, the commanding sensor is considered to be a
“client” process that issues commands to the system.

Several sensors can be grouped together representing a log-
ical sensor. We will assume that each logical sensor is rep-
resented as a client process which sends commands through
a channel to a multiplexer (the server process) which de-
cides the command to be executed first. Besides these logical
sensors, we might have other processes (general controllers)
that send commands to the server process to carry out some
global goals. Figure 2 shows a schematic diagram for the
proposed control scheme.

Let’s call any process that issues commands to the server a
client process. In this figure, there are three types of clients:

1. Commanding sensors, that are usually used for reac-
tion control and collision avoidance.

2. General Controllers, that carry out a general goal to
be achieved (e.g., navigating from one position to an-
other.)

3. Emergency exits, which bypass the multiplexerin case
of emergencies (e.g., emergency stop when hitting an
obstacle.)

Sensor Space

Dumb Sensor

Emergency
Exit

Raw Data

- Intellegent Sensor

}

General Controllers

Monitor

Commands

Multiplexer

!

Low-level Controller o - - =

56 &

Figure 2: The proposed control scheme.

1
1
]
t
v
'
:
]
'
'
'
i
'
'
'
i
'
'
\
|
'
'
'
¢
'
|
i
)
¢
'
|
1
i
)
'
'
|
'
'
1
'
|
i
'
'
)
]
1
'
'
'
'
t
1
'
'

The low-level controller, shown in Figure 2, translates the
high-level commands into low-level instructions which drive
the system’s actuators. The low-level controller receives its
commands either from the multiplexer or from an emergency
exit.

4. Experiments and Results

Several experiments were performed on a mobile robot
called “LABMATE” designed by Transitions Research Cor-
poration [19] to check the applicability and validity of the
proposed control scheme, and the results were very encour-
aging. Also, a simulator called XSim has been developed to
perform initial testing and analysis before conducting exper-
iments on the real robot. This simulator displays the robot on
the screen and accepts actual LABMATE commands like go,
turn, read-sonars, etc. In this environment, moving from the
simulation to the real robot is simply a matter of compiling
the driver program with the LABMATE library rather than
the simulation library.

The LABMATE was used for several experiments at the De-
partment of Computer Science, University of Utah. It also
was entered in the 1994 AAAI Robot Competition [20, 21].
For that purpose, the LABMATE was equipped with 24
sonar sensors, eight infrared sensors, a camera and a speaker.

201

Figure 3: The LABMATE robot with its equipments.

! Figure 3 shows the LABMATE with its equipment. Sim-
ulation results and detailed implementation can be found
in [22].

The hardware setup used in these experiments consisted of a
PC running Linux to provide parallel processing capabilities,
and an RS232 serial cable connecting the PC to the LAB-
MATE. No special hardware was used and this setup was in-
expensive and easy to use.

The message passing paradigm is used for process commu-
nication. This allows processes to be running on different
platforms without the need for shared memory. In our imple-
mentation, MPI, Message-Passing Interface [23] was used.

The priority scheme in our application is set by each client as
a number from 1 to 10, with 1 as the highest priority. Nor-
mally, 1 is reserved for the collision avoidance client. The
server checks for the priority associated with each command,
and executes the command with the highest priority while
notifying the “losers” which command was executed. If two
commands with the same priority arrive at the same time, the
server arbitrarily selects one of them and ignores the other.
Commands that were not selected are cleared since the state
of the robot has been changed after executing the command
with the highest priority.

4.1. Commanding Sensors and Reaction Control
To simplify our model, the 24 sonar sensors are divided into
four logical sensors as shown in Figure 4.

1. LS-FRWD consists of the front 6 sensors.
2. LS-BKWD consists of the rear 6 sensors.

3. LS-RIGHT consists of the right 6 sensors.

1 The LABMATE preparations, the sensory equipments, and the soft-
ware and hardware controllers were done by L. Schenkat and L. Veigel at
the Department of Computer Science, University of Utah.

d_frwd
--------------------- ’-.-
~
L N

...
...............................

dright dleft d_frwd | dbkwd FORWARD BACKWARD
c c c c STOP STOP
c c c I GO-BKWD —
c c f c — GO-FRWD
c c f I — —
c f c c TURN-RIGHT TURN-LEFT
c f c f TURN-RIGHT TURN-LEFT
c f I ¢ TURN-RIGHT TURN-LEFT
c I f I TURN-RIGHT TURN-LEFT
f c c c TURN-LEFT TURN-RIGHT
I c c f TURN-LEFT TURN-RIGHT
f c f c TURN-LEFT TURN-RIGHT
I c f f TURN-LEFT TURN-RIGHT ||
f ki c ¢ TURN-L/R TURN-L/R
I I c | TURN-L/R —
I f I c — TURN-L/R
f ! b ! — -

Figure 4: Dividing the sonar sensors into four logical sensors.
4. LS-LEFT consists of the left 6 sensors.

These logical sensors communicate with each other to decide
the command to be issued. This makes the job of the multi-
plexer easier, since it will deal with the four logical sensors
as one client. The goal of the reactive control in this experi-
ment is two fold:

1. Avoid obstacles.

2. Keep the robot in the middle of hallways, speciaily
when moying through narrow corridors or going
through a door.

We define two abstract values: close (c¢) and far (f). These
two values represent the distance between the robot and the
closest object at any of the four sides. The range for ¢ and f
are usually user defined values. The command to be issued as
a reaction control depends on the current state of the system
and the distance value at each side. There are several ways to
define a command function F to achieve the required goal.
The assumption here is that there is always enough space for
the robot to rotate left or right, therefore there is no need to
define any reaction control when the robot is rotating. One
such function is shown in Table 1.

In this table, TURN-L/R means the command can be either
TURN-LEFT or TURN-RIGHT, and a dash “—" means no
command is issued. Notice that, in case d_le ft and d_right
have different values, the values for d_frwd and d_bkwd are
not important. This is because we need to balance the dis-
tance to the left and to the right of the robot, and if, for exam-
ple, the distance in front (d_frwd) is ¢, and the robot state is

Table 1: An example of a decision function for reaction control.

FORWARD, then moving to the left (or to the right) will serve
both avoiding the object in front, and balancing the distance
on both sides. In the first case of the table, when the distance
is ¢ on all sides, the robot will not be able to move anywhere,
and the sensor readings will not change. This will result in
a deadlock which requires external help by moving at least
one of the obstacles for the robot to be able to move.

4.2. Experiments

The following is a description of three of the experiments
that were performed on both the simulator and the real robot.
The resuits of the real robot were qualitatively very similar
to the simulation results except for some deviations due to
the noise in the real sonar sensors.

4.2.1 Experiment (1): This was the first experiment
performed to demonstrate the applicability of this control
scheme. In this experiment, two clients were running simul-
taneously; the collision avoidance client implemented as a
commanding sensor, and a simple navigator which always
commands the robot to move forward. The collision avoid-
ance has priority 1, which is the highest priority, and the nav-
igation client has priority 9. Figure 5 shows the trajectory of
the robot using the simulation program and the trajectory of
the real robot with the sonar readings at each step. Notice
that there is some deviations in the real trajectory from the
stmulated one due to the noise in the sonar readings as shown
in Figure 5 environment.

4.2.2 Experiment (2): Inthe second experiment, we
added another goal-directed client which tries to move the
robot to a certain goal location. This client has priority 5
which is higher than the simple navigator process. This new
client sends commands to the server to update the direction
of the robot such that it moves towards the goal location. In
this experiment, the initial and the final points were chosen
such that there is a wall between them. Figure 6 shows the
trajectory for the simulated and the real robot. Notice that at
several points, the collision avoidance client took over and
moved the robot away from the wall, then the new client up-
dates the direction towards the goal point.

Figure 7: The trajectories for the simulated and the real robot for experiment (3).

203

4.2.3 Experiment (3): In the third experiment, we
replaced the goal-directed client with a door-finding client
which is another commanding sensor. This new client tries
to find open doors and direct the robot to go through these
doors. Finding doors using sonar sensor is very hard and
problematic, and there is a lot of research in this area. For
this experiment we used a very crude algorithm and a simple
hallway structure just to demonstrate the capabilities of the
proposed control scheme. Figure 7 shows the trajectory for
the simulated and the real robot while moving in a hallway
environment with two open doors at different locations.

5. Conclusion and Future Work

In this paper, a distributed sensor-based control scheme was
proposed. In this scheme, each sensor can be viewed with
three different levels of abstraction: dumb sensors which
provide raw data, intelligent sensors which provide high
level information in the form of events, and finally, com-
manding sensors which can issue commands representing a
reaction behavior for the system. Commands can be issued
by different processes called clients. Each client may issue
commands at any time, and a multiplexer (the server) selects
the command to be executed. A priority scheme has to be
defined as a basis for selection. Examples for applying this
control scheme to a mobile robot were described. We believe
that this scheme provides for more flexible and robust control
systems, and allows more modular design for the whole con-
trol system. It also provides fast response for reaction behav-
ior which is an essential requirement in real-time systems.

Currently, we are working on designing and implementing
higher level controtlers that use the lower-level clients to per-
form more complicated tasks. This includes selecting the ap-
propriate clients and dynamically changing their priorities to
realize the required behavior. Also, some aspects of toler-
ance analysis will be incorporated in the proposed scheme
to provide quantitative measures for the accuracy of the lo-
cation of measured points. It also serves as the basis for de-
vising sensing strategies to enhance the measured data for lo-
calization and map construction.

References

[1] M. Dekhil, T. M. Sobh, and A. A. Efros. Sensor-based dis-
tributed control scheme for mobile robots,. In IEEE International
Symposium on Intelligent Control (ISIC 95), Monterey, California,
August 1995.

[2] T C. Henderson and E. Shilcrat. Logical sensor systems.
Journal of Robotic Systems, pages pp. 169-193, March 1984.

[3]1 E.D. Shilcrat. Logical sensor systems. Master’s thesis, Uni-
versity of Utah, August 1984.

[4] E C. A Groen,P. P J. Antonissen, and G. A. Weller. Model
based robot vision. In IEEE Instrumentation and Measurment Tech-
nology Conference, pages 584-588, 1993.

204

[51 R. Joshi and A. C. Sanderson. Model-based multisensor
data fusion: a minimal representation approach. In IEEE Int. Conf.
Robotics and Automation, May 1994.

[61 S. A. Spiewak, Y. L. Chung, and M. S. Huang. Analytical
modeling of sensors. In NSF Design and Manufacturing Systems
Conference, January 1993.

[71 H.E Durrant-Whyte. Integration, coordination and control
of multisensor robot systems. Kluwer Academic Publishers, 1988.
[8] G. D. Hager and M. Mintz. Task-directed multisensor fu-
sion. In IEEE Int. Conf. Robotics and Automation, 1989.

[91 R.C.Luo and M. G. Kay. Multisensor integration and fu-
sion for intelligent machines and systems. Ablex Publishing Cor-
poration, 1995.

[10] T. C. Henderson, C. Hansen, and B. Bhanu. The specifica-
tion of distributed sensing and control. Journal of Robotic Systems,
pages pp. 387-396, March 1985.

[11] S.S.IyengarandL.Prasad. A general computational frame-
work for distributed sensing and falt~tolerant sensor integration.
IEEE Trans. Systems Man and Cybernetics, May 1994.

[12] D.Nadig, S. S.Iyengar, and D. N. Jayasimha. New architec-
ture for distributed sensor integration. In IEEE SOUTHEASTCON
Proceedings, 1993.

[13] - A. Yakovleff, X. T. Nguyen, A. Bouzerdoum, A. Moini,
R. E. Bogner, and K. Eshraghian. Dual-purpose interpretation of
sensory information. In IEEE Int. Conf. Robotics and Automation,
1994.

[14] J. Budenske and M. Gini. Why is it difficult for a robot to
pass through a doorway using altrasonic sensors? In IEEE Int.
Conf. Robotics and Automation, pages 3124-3129, May 1994.
[15] R. A. Brooks. A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, RA-2(1):pp. 14—
23, March 1986.

[16] R. A. Brooks. A hardware retargetable distributed layered
architecture for mobile robot control. In IEEE Int. Conf. Robotics
and Automation, pages 106-110, 1987.

[171] R. S. Ahluwalia and E. Y. Hsu. Sensor-based obstruction
avoidance technique for a mobile robot. Journal of Robotic Sys-
tems, 1(4):pp. 331-350, Winter 1984.

[18] C. Gourley and M. Trivedi. Sensor-based obstacle avoid-
ance and mapping for fast mobile robots.. In IEEE Int. Conf.
Robotics and Automation, 1994.

[19] TRC Transition Research Corporation. LABMATE user
manual, version 5.21L - f., 1991.

[20] L. Schenkat, L. Veigel, and T. C. Henderson. Egor: Design,
development, implementation — an entry in the 1994 AAAI robot
competition. Technical Report UUCS-94-034, University of Utah,
December 1994.

[21] R. Simmons. The 1994 AAAI robot competition and exhi-
bition. Al Magazine, 16(2).pp. 19-30, Summer 1995.

[22] M. Dekhil, G. Gopalakrishnan, and T. C. Henderson. Mod-
eling and verification of distributed control scheme for mobile
robots. Technical Report UUCS-95-004, University of Utah, April
199s.

[23] In MPI: a message-passing interface standard. University
of Tennessee, Knoxville., May 1994.

