Chapter 2
Intelligent Behaviour Modelling and Control
for Mobile Manipulators

Ayssam Elkady, Mohammed Mohammed, Eslam Gebriel, and Tarek Sobh

Abstract In the last several years, mobile manipulators have been increasingly
utilized and developed from a theoretical viewpoint as well as for practical ap-
plications in space, underwater, construction and service environments. The work
presented in this chapter deals with the problem of intelligent behaviour modelling
and control of a mobile manipulator for the purpose of simultaneously following
desired end-effector and platform trajectories. Our mobile manipulator comprised
a manipulator arm mounted on a motorized mobile base wheelchair. The need for
accurate modelling of the mobile manipulator is crucial in designing and controlling
the motion of the robot to achieve the target precision and manipulability require-
ments. In this chapter, we propose a new method for measuring the manipulability
index used for serial manipulators. Furthermore, we provide some simulations that
are implemented on different serial manipulators, such as the Puma 560 manipula-
tor, a six degrees of freedom (DOF) manipulator and the Mitsubishi Movemaster
manipulator. We then extend the manipulability concept commonly used for serial
manipulators to general mobile manipulator systems.

Keywords Mobile manipulator - Manipulability - Jacobian - Dexterity - Singular
value decomposition - Singularities - Nonholonomic - Kinematics

2.1 Introduction

Studying the performance characteristics of the robot, such as dexterity, manip-
ulability and accuracy, is very important to the design and analysis of a robot
manipulator. The manipulability is the ability to move in arbitrary directions, while
the accuracy is a measure of how close the manipulator can return to a previously
taught point. The workspace of a manipulator is a total volume swiped out by
the end effector when it executes all possible motions. The workspace is subdi-
vided into the reachable workspace and the dexterous workspace. The reachable
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workspace is all point reachable by the end-effector. But the dexterous workspace
consists of all points that the end-effector can reach with an arbitrary orientation
of the end-effector. Therefore, the dexterous workspace is a subset of the reachable
workspace. The dexterity index is a measure of a manipulator to achieve different
orientations for each point within the workspace.

In this chapter, we present a new method for measuring the manipulability index,
and some simulations are implemented on different manipulators, such as the Puma
560 manipulator, a six degrees of freedom (DOF) manipulator and the Mitsubishi
Movemaster manipulator. In addition, we describe how the manipulability measure
is crucial in performing intelligent behaviour tasks. The manipulability index is con-
sidered as a quantitative and performance measure of the ability for realizing some
tasks. This measure should be taken into consideration in the design phase of a
serial robot and also in the design of control algorithms. Furthermore, we use the
proposed method for measuring the manipulability index in serial manipulators to
generalize the standard definition of the manipulability index in the case of mobile
manipulators.

2.2 Prior Work

Klein and Blaho [6] proposed some measures for the dexterity of manipulators,
then they compared several measures for the problems of finding an optimal configu-
ration for a given end-effector position, finding an optimal workpoint and designing
the optimal link lengths of an arm. They considered four measures for dexterity:
determinant, condition number, minimum singular value of the Jacobian and joint
range availability. Salisbury and Craig [8] illustrated hand designs with particular
mobility properties. In addition, they gave a definition of accuracy points within ma-
nipulator workspace. They used another performance index which is the condition
number of the Jacobian. Yoshikawa [13] gave one of the first mathematical measures
for the manipulability of any serial robot by discussing the manipulating ability of
robotic mechanisms in positioning and orienting end-effectors. He introduced the
term manipulability, which involves the Jacobian and its transpose; then the evalua-
tion of the determinant of the Jacobian can be used to determine the manipulability
measure. Gosselin [3] presented two dexterity indices for planar manipulations, the
first one is based on a redundant formulation of the velocity equations and the sec-
ond one is based on the minimum number of parameters. Then the corresponding
indices were derived for spatial manipulators. These indices are based on the condi-
tion number of the Jacobian matrix of the manipulators. He considered the dexterity
index, manipulability, condition number and minimum singular value, then he ap-
plied these indexes to a SCARA type robot. Van den Doel and Pai [12] introduced
a performance measure of robot manipulators in a unified framework based on dif-
ferential geometry. The measures are applied to the analysis of two- and three-link
planar arm. In [5], the authors demonstrated that manipulability of a mechanism
is independent of task space coordinates. Furthermore, they provided a proof of
the independency of the manipulability index on the first DOF. In [7], the author
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examined two geometric tools for measuring the dexterousness of robot manipula-
tors, manipulability ellipsoids and manipulability polytopes. He illustrated that the
manipulability ellipsoid does not transform the exact joint velocity constraints into
task space and so may fail to give exact dexterousness measure and optimal direction
of motion in task space. Furthermore, he proposed a practical polytope method that
can be applied to general 6-dimensional task space.

In [10], Sobh and Toundykov presented a prototyping software tool which runs
under the mathematica environment and automatically computes possible optimal
parameters of robot arms by applying numerical optimization techniques to the ma-
nipulability function, combined with distances to the targets and restrictions on the
dimensions of the robot.

Nearly all of the above techniques start by getting the forward kinematics, then
the Jacobian equation, which relates to the velocity of the end-effector and the joint
velocities.

2.3 Manipulability Measure

2.3.1 Jacobian Matrix

The Jacobian matrix provides a transformation from the velocity of the end-effector
in cartesian space to the actuated joint velocities as shown in equation (2.1)

& =Jg, @2.1)

where ¢ is an m-dimensional vector that represents a set of actuated joint rates, X
is an n-dimensional output velocity vector of the end-effector and J is the m x n
Jacobian matrix. It is possible that m # n. As an example, a redundant manipulator
can have more than six actuated joints, while the end-effector will at most have six
DOF, so that m > n.

In the singular position, the Jacobian matrix J looses rank. This means that the
end-effector looses one or more degrees of twist freedom (i.e., instantaneously, the
end-effector cannot move in these directions). The mathematical discussion of sin-
gularities relies on the rank of the Jacobian matrix J, which, for a serial manipulator
with n joints, is a 6 x n matrix. For a square Jacobian, det(J) = 0 is a necessary
and sufficient condition for a singularity to appear.

2.3.2 Singular Value Decomposition Method

The singular value decomposition (SVD) method works for all possible kinematic
structures (i.e., with every Jacobian matrix J with arbitrary dimensions m x n). The
SVD decomposition of any matrix J is on the form:

Jan = Umxm men Vt

nxn-’

2.2)
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with
op 0 O 0 0 0
0 o O 0 0 0
YX=10 0 0 0 0
0 o0 om—1 0 O 0
0 0 0 om O 0

Such that U and V are orthogonal matrices. Thus,

U'U = Inxm. (2.3)
VYV = I uxn, 24

where [ is the identity matrix and the singular values are in descending orders o >
07 > -+ > 0y,. The matrix has a zero determinant and is, therefore, singular (it has
no inverse). The matrix has two identical rows (or two identical columns). In other
words, the rows are not independent. If one row is a multiple of another, then they
are not independent, and the determinant is zero. (Equivalently: If one column is a
multiple of another, then they are not independent, and the determinant is zero.) The
rank of a matrix is the maximum number of independent rows (or the maximum
number of independent columns). A square matrix A,x, is nonsingular only if its
rank is equal to n. Mathematically, matrix J having a full rank means that the rank
of J = m. In this case, o, # 0. When 0, & 0, the matrix J does not have a full rank,
which means that the matrix J looses one or more DOF. This happens physically,
when the serial robot has two joint axes coinciding on each other.

2.3.3 Manipulability Measures

Yoshikawa [13] defined the manipulability measure p as the square root of the
determinant of the product of the manipulator Jacobian by its transpose

p = [det(J - JH)]V/2. (2.5)

If the Jacobian matrix J is a square matrix, the manipulability p is equal to the ab-
solute value of the determinant of the Jacobian. Using the SVD, the manipulability
can be written as follows:

M= 0102...04. (2.6)

Another method for the manipulability measure is the reciprocal of the condition
number [termed the conditioning index] that was used in [11].
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2.3.4 Optimizing the Manipulability Index of Serial Manipulators
Using the SVD Method

Our current work addresses the manipulability index for every point within the
workspace of some serial manipulators. The method provided promising results,
since it is considered one of the crucial tasks required for designing trajectories or
avoiding singular configurations. We propose a new method for measuring the ma-
nipulability, then we implemented simulations supporting our method on the Puma
560 manipulator, a six DOF manipulator and the Mitsubishi Movemaster manip-
ulator. As mentioned in [11], the determinant of a Jacobian cannot be used for
expressing the manipulability’s index. It reaches zero when a manipulator reaches
any singular configuration. Another method has been proposed, labelled the recip-
rocal of the Jacobian (as in [11]). In past researches, there was an argument about
whether the minimum value of the ¢’s in (2.2) or the multiplication of all o’s exactly
represents the manipulability’s index [3].

In this work, we propose a new concept for measuring this index, then justify
this concept by visualizing the bands of this index, resulting from our experiments.
Moreover, a new relationship between the minimum rank of the Jacobian matrix
and the order of one of these ¢”’s (in (2.2)) can exactly express the manipulability’s
index.

2.34.1 The Puma 560 Manipulator: A Case Study

In case of the singular configuration of the Puma 560 manipulator at Q0 = [0,0, -7,
0,0, 0], the following would be the J, U, X and V matrices as depicted in (2.2):

[0 0 0 0 0 0
20 0 0 0 0 0
;|0 2010 00 0
0o 0 0 10 1|
0 1 1 010
|1 0 0 0 0 0
) 0 0 0 1 —0.0034 |
0 —0.9988 0 0 —0.0002 —0.0499
y — | 09982 0 0  0.06 0 0
0 0 —1 0 0 0
0.06 0 0 0.9982 0 0
0 —0.0499 0 0 0.0034  0.9987 |




34 A. Elkady et al.

[22.401 0 0 0 00

0 20025 0 0 00

0 0 141492 0 0 0

=1 0 0 1095 0 0

0 0 0 0 00

0 0 0 0 00
[0 —1 0 0 0 0 7
—0.8939 0 0 0.1852 04074 —0.027
[ | 04483 0 0 —0.3638 —0.8147  0.0539
0 0 —0.7071 0 —0.0467 —0.7056
—0.0027 0 0 —0.9129 04074  —0.027
0 0 —0.7071 0 0.0467  0.7056

It is obvious that in the singular matrix X', o5 and 0g assume the value zero
with small tolerance. This is due to the fact that there are two singular cases in its
configuration; the fourth and sixth joints are on same axis and it is in a singular arm
configuration, and thus, o5 is zero.

2.3.5 Proposed Manipulability Measure Algorithm

To justify the proposed method, the following algorithm is proposed:

Algorithm 1: Calculate the manipulability index

1: Find the joint(s) that may lead to a singular configuration assuming that the number of these
joints = n.
2: fori = 1ton do
3:  Change the value of the i'" joint from its initial to its final value using simulation
software — Matlab robotic toolbox [2] is used in our case.
4. Calculate the Jacobian (J) and singular (X') matrix.
5:  Plot every normalized o and also the rank of the Jacobian matrix.

o
Normalizedo; = ! 2.7)
Max{0j1.0i2, 03, ......, Oin}

Where: i is the order of the o in the singular matrix and n is the number of steps during the
simulation.

6:  Check the rank of the Jacobian matrix.

7: end for
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2.4 Experiments

In this section, we will show and explain some results using serial manipulators with
DH parameters illustrated in Tables 2.1-2.3. We have proposed some assumptions
which can be summarized as follows:

e In our case study, we have dealt with the arm manipulability regardless of the
orientation singularity.
e We study non-redundant manipulators only.

2.4.1 The Puma 560 Manipulator

In the Puma 560, we have experienced that the third joint is the cause of singu-
larity. The sample trajectory of this manipulator from the initial position Qinita =
[0,0,—7%,0,0,0] to the final position Qgna = [0,0, 5, 0,0, 0] is shown in Fig.2.1.
The DH parameters of the Puma 560 are shown in Table 2.1.

Table 2.1 DH parameters of the Puma 560 manipulator

i o a [% d Initial limit Final limit Joint’s type
1 90 0 * 0 —170 170 R
2 0 0.4318 * 0 —225 45 R
3 —90 0.0203 * 0.15005 —250 75 R
4 90 0 * 0.4318 —135 100 R
5 —90 0 * 0 —100 100 R
6 0 0 * 0 —180 180 R

Table 2.2 DH parameters of a six degrees of freedom (DOF) serial

manipulator

i o a 0 d Initial limit ~ Final limit ~ Joint’s type
1 90 0 * 10 —170 170 R

20 0 * 0 —225 45 R

3 -9 0 * 0 —250 75 R

4 90 0 * 10 —135 100 R

5 -9 0 * 0 —100 100 R

6 0 0 * 0 —180 180 R

Table 2.3 Manipulability’s bands of the Mitsubishi Movemaster manipulator
in 2D workspace

i o a % d Initial limit Final limit Joint’s type
1 90 0 * 300 —150 150 R
2 0 250 * 0 100 130 R
3 0 160 * 0 —110 0 R
4 —90 0 * 0 —90 90 R
5 0 0 * 72 0 0 R
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Fig. 2.2 The behaviour of o to 0 during the experiment

In Fig. 2.2, it is obvious that 05 is exactly expressing the manipulability’s index.
Furthermore, the rank of the Jacobian matrix during this experiment was constant
at 5 because joints 6 and 4 were on same axis during the whole experiment. The
manipulability index of every point within the whole workspace is represented in
bands and each band is visualized using a different color as shown in Fig.2.3.

Figure 2.3 is considered important in our research strategy since it provides
a visual demonstration for the manipulability measure for the entire workspace
for the Puma 560 manipulator. These results can strongly contribute in develop-
ing an intelligent mobile manipulator. For example, the positions with the highest
manipulability index will have better dexterity compared with those of the lowest
manipulability index.

2.4.2 A Six Degrees of Freedom Serial Manipulator

Similarly, we implemented the same procedure for the Mitsubishi Movemaster ma-
nipulator and a regular six DOF manipulator. In a six DOF manipulator, the sample
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Fig. 2.3 Manipulability’s bands of the puma 560 manipulator in 2D workspace according to o

trajectory of this manipulator is from the initial position Qa1 = [0, 0, —%, 0,0,0]
to the final position Qgna = [0, 0, %, 0,0, 0]. The DH parameters of this manipula-
tor are shown in Table 2.2. The behaviour of o3 during the experiment is shown in
Fig.2.4. The visual demonstration of the manipulability index is shown in Fig. 2.5.

2.4.3 The Mitsubishi Movemaster Manipulator

The initial position iS Qinia = [0, 0, —%, 0,0,0] and the final position Qfn =
[0,0, %, 0,0,0]. The DH parameters of this manipulator are shown in Table 2.3.
The behaviour of o3 during the experiment is shown in Fig. 2.6. The visual demon-
stration of the manipulability index is shown in Fig.2.7.

2.4.4 Experimental Results

It is obvious from Table 2.4 that we can suppose that the order of o that is expressing
the kinematics manipulability’s index equals to the minimum rank of the Jacobian
matrix.
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Table 2.4 Summary of results

Order of o0 expressing  Min rank of the

Manipulator the manipulability Jacobian matrix
Puma 560 5 5
Six DOF 3 3
Mitsubishi movemaster 3 3

2.5 Mobile Manipulator

A mobile manipulator is a manipulator mounted on a mobile platform with no sup-
port from the ground. A mobile manipulator offers a dual advantage of mobility
offered by the platform and dexterity offered by the manipulator. For instance, the
mobile platform extends the workspace of the manipulator. The DOF of the mo-
bile platform also adds to the redundancy of the system. The mobile manipulator
is required to perform complicated tasks and is potentially useful in dangerous and
unpredictable environments, such as at a construction site, space, underwater, con-
struction, service environments and in nuclear power station. Arai [1] suggested that
the mobile manipulator system should be capable of both locomotion and manipu-
lation when it is applied to various tasks in construction, agriculture, home, office
and hospital services. Then he described why and how locomotion and manipula-
tion should be integrated, what the benefits are and what problems must be solved
in terms of practical application of the robot. In [9], a systematic modelling of the
nonholonomic mobile manipulators is proposed. The derived models are used to
generalize the standard definition of manipulability to the case of mobile manipula-
tors. In addition, the effects of mounting a robotic arm on a nonholonomic platform
were shown through the analysis of the manipulability.

In fixed based serial manipulators, manipulability depends on link lengths, joint
types, joint motion limits and the structure of the manipulator. In mobile manipu-
lator, the manipulability depends on the kinematics, geometric design, the payload
and mass and mass distribution of the mobile platform. Thus, the manipulability
measure in mobile manipulators is very complicated due to the coupling between
the kinematic parameters and the dynamics effect.

We extend the manipulability concept commonly used for serial manipulators
to general mobile manipulator systems. To study the manipulability and dexterity
measure for a mobile manipulator, we first study those of the fixed base serial ma-
nipulator as discussed in the previous sections.

2.6 RISC Mobile Manipulator

We are developing and constructing the mobile manipulator platform RISC. The
prototype of the RISC is shown in Fig. 2.8. The RISC mobile manipulator has been
designed to support our research in algorithms and control for autonomous mobile
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Fig. 2.8 A prototype of the RISC manipulator

manipulator. The objective is to build a hardware platform with redundant kine-
matic DOF, a comprehensive sensor suite and significant end-effector capabilities
for manipulation. The RISC platform differs from any related robotic platforms be-
cause its mobile platform is a wheelchair base. Thus, the RISC has the advantages
of the wheelchair, such as high payload, high speed motor package (the top speed of
the wheelchair is 6 miles/h), Active-Trac and rear caster suspension for outstanding
outdoor performance and adjustable front anti-tips to meet terrain challenges.

2.7 Modelling of the RISC

2.7.1 The Position of the Robot

In order to specify the position of the robot on the plane, we establish a relationship
between the global reference frame of the plane and the local reference frame of
the robot. The origin O of the global reference frame is selected at arbitrary on the
plane as shown in Fig. 2.9. The point C is the centre of mass of the robot. The origin
P of the local reference frame of the robot {X,,Y,} is at the centre of the robot.
The basis defines two axes relative to P on the robot chassis and is, thus, the robot’s
local reference frame. The position of P in the global reference frame is specified by
coordinates x and y and the angular difference between the global and local reference
frames is given by 6. The pose of the robot is described by a vector £.

E=1y|. (2.8)
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Fig. 2.9 Kinematic model of the RISC

To describe the robot’s motion, it will be necessary to map the motion along
the axes from the global reference frame to the robot’s local reference frame. This
mapping is accomplished using the orthogonal rotation matrix R(6), where

cos(f) sin(0) 0
R(0) = | —sin(6) cos(h) 0
0 0 1

This orthogonal rotation R(#) is used to map the motion £ in the global reference
frame to motion ¥ £ in terms of the local reference frame {X p-Yp}. This operation is:

Pe=R(O)E (2.9)

2.7.2 The velocity of the robot

Given that the spinning speed of left wheel is &; and the spinning speed of the right
wheel is @,, a forward kinematic model would predict the robot’s overall speed in
the global reference frame. The linear velocity of the centre of the right wheel is v,
where

Ve = rd,. (2.10)

In addition, the velocity of the left one is v; where

v = rdy. (2.11)
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Using the instantaneous centre of rotation (ICR), if the linear velocity of the centre
P of the robot is V and its angular velocity @, we can find that:

Ve + vy

V="—" 2.12
> (2.12)
. Ve — VI
=0 = 2.13
® L (2.13)
The velocity of point P in its local reference frame © S P
V
Pe,=10]. (2.14)
0
The velocity of point C in the local reference frame {X .Y} is © éc where
Vv
Pe |
. =]6d |. (2.15)
G
The velocity of point P in the global reference frame 5 p is
£, = R(O)'FE,, (2.16)
(®; + D)) cos()
£, = % (@ + &,)sin(d) |. 2.17)
(CA)
]
The velocity of point C in the global reference frame éc is
se= RO (2.18)
Thus,
X (D1 + D) cos(8) + 4 (D — b,) sin(6)
. r . . . . .
fe=| Je | =5 | (@ +P)sin(6) + (D, —D)cos(f) | (2.19)



2 Intelligent Behaviour Modelling and Control for Mobile Manipulators 45

2.7.3 Kinematic Constraints

However, several important assumptions will simplify this representation. First, the
plane of the wheel always remains vertical and that there is, in all cases, one single
point of contact between the wheel and the ground plane. Furthermore, there is no
sliding at this single point of contact, so the wheel undergoes motion only under
conditions of pure rolling and rotation about the vertical axis through the contact
point.

The fixed standard wheel has no vertical axis of rotation for steering. Its angle to
the chassis is fixed and it is limited to back and forth motion along the wheel plane
and rotation around its contact point with the ground plane. The rolling constraint
for this wheel enforces that all motions along the direction of the wheel plane must
be accompanied by the appropriate amount of wheel spin. Thus, the first constraint is

Ye cos(8) — x¢ sin(f) — Od = 0. (2.20)

Furthermore, there are two rolling constraints, i.e., the driving wheels do not slip,

%ecos(8) + yesin(0) + 01 = ro,, (2.21)
e cos() + Ve sin(f) — 01 = ray. (2.22)

Letting ¢ = [x¢Ye, 0, @y, @], the three constraints can be written in the form of:

A(q)g =0, (2.23)
where
Xc
sinf —cosf@d 0 0O Ve
A(g) = | cosO® sinf [ —r 0 and ¢g=1| 0
—cosf —sinf [ 0 r b,
i

The last two equations are called the nonholonomic constraint because they are not
integrable differential equations.

2.8 Conclusions and Future Work

In this chapter, we present a new algorithm for measuring manipulability, and
then we implement simulations supporting our methodology on different manipula-
tors. We describe how mobile manipulator capabilities are a key to several robotic
applications and how the manipulability measure is crucial in performing intelli-
gent behaviour tasks such as grasping, pulling or pushing objects with sufficient
dexterity.
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In our anticipated future work, there will be an ongoing effort for the develop-

ment of multiple mobile manipulator systems and platforms, which will interact
with each other to perform more complex tasks exhibiting intelligent behaviours
utilizing the proposed manipulability measure.
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