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Abstract. In this work we address the problem of tolerance representation and analysis across
the domains of industriul inspection using sensed duts, CAD design, und manufueturing. Instead
of using geometric primitives in CAD models to define and represent tolerances, we propose the
use of stronger methods that are completely based on the manufacturing knowledge for the objects
1o be inspected. We guide our sensing stretegies bused on the manufacturing process plans for the
parts thar are 1o be inspected and dehne, compuie, and analyze the tlerance of the pars based
on the uncertuinty i the sensed duta along the different wolpaths of the sensed put. We believe
that our new approach is the hest way 1o unify wolerances across sensing, CAD, and CAM, as it
captures the manulfacturing knowledge of the parts (o be inspected, as opposed (o just CAD geometric
representations”
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1. Introduction

In this work we address the problem of recovering manufacturing tolerances and
deformations from the uncertainty in sensing machine parts. In particular, we uti-
lize the sensor uncertainty to recover robust models of machine parts, based on the
probabilistic measurements recovered, for inspection applications. We design and
implement a spline-based model that captures manufacturing tolerancing based on
uncertain sensed data and knowledge of possible manufacturing process plans.
We design and implement our sensing strategies and tolerance determination
algorithms based on interval splines. We believe this is the best way to define a
unitying framework, as it captures both parameterizable manufacturing toleranc-
ing errors, and non-easily-parameterizable ones (toolpaths that produce a surface
definition, for example). This method is also suitable for our purposes as our CAD
modeler (The Alpha_l system, designed at the University of Utah) is based on
spline representation, and it is used to produce process plans and toolpaths for NC
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milling machines to manufacture the actual parts from CAD maodels. Our toleranc-
ing method captures the mechanical way in which the manufacturing tool moves
and actually makes a feature. surface or curve in 4 manulacturing process.

The standard representations for Computer Aided Design include volumetric,
boundary and CSG models. Current advanced modelers, can produce process plans
for specific machines in order to manufacture the object. We believe that the process
plan and associated information (e.g., the ool path, the ol to be used, its speed,
ete.) provide a strong basis for analyzing the manufacturing and inspection steps
will respect to tolerance.

A (olerance specification on the shape geomelry must be transformed into the
corresponding tolerance on the machining operation and vice versa, This in wm
cun be used to select an approapriate manufacturing process, given knowledge
of the manufacturing accuracy of the process. This yields direct methods for de-
ciding on sensing strategies both (o monitor the manufacture of the part, as well
as for post-manufacturing inspection. These sensing strategies are derived from
an analysis of where the toolpath is most likely to deviate from the tolerance
specification.

These must all be done as efficiently as possible; in particular, it must be:

o straightforward 1o choose the cheapest manufacturing process, to go as fast as
possible on that machine,

o (0 make as few sensed measurements as possible, and

¢ to perform as little computation as possible.

The keys 1o our approach are:

e have/use knowledge about ecach feature and machining process for that fea-
ture, and
e exploit the ol path representation 1o guide analysis and sensing strategies.

The usual approach to validation is to simply measure the geometry resulting
from the manufacturing process and compare it to the nominal geometry from the
CAD maodel. We believe that a stronger approach, exploiting knowledge of the
process plan and the particular manufucturing process, is possible, and that this
approach permits the automatic synthesis ol sensing stralegies.

To achieve this requires a tolerance specification which:

e specifies design geomelry tolerance as well as toolpath tolerances, and
e helps locate high payoff (i.e.. maximal information gain) inspection regions.

We are working with the Alpha_| Computer Aided Geometric Design system
and exploiting its ability to generate process plans for 3- and S-axis NC mulling
machines. For these machines, the process is @ sel of toolpaths with appropnate
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toals, speeds, etc., specified. Thus. a sensing Strategy is a set of sensing operations
carried out at particularly high risk parts of the toolpath or places on the completed

part.

2. Background, Motivation, and Methodology

The traditional approach (o structuring sensing strategies and tolerance computa-
tion Tor the inspection of machine parts has been to utilize the sensed data (range,
image, and/or touch) and the recovered geometries of the sensed objects for guiding
the sensors 10 get more data and to do better fittings at the “relevant” or “uncertain™
regions. We propose an approach that is based on the knowledge of the actual
manufacturing process [or the parts to be inspected, as opposed 1o only the sensed
data points and the recovered geometric CAD model. Our approach utilizes the
knowledge of the process plan and the subsequent toolpath of the milling machines
and the errors, uncertainties, and (olerances assoctated with that process 1o achieve
an optimal sensing strategy al the relevanl regions, features, and manufacturing
path on the parts to be inspected. We anticipate that this approach will not only
permit us 1o answer guestions coneerning design and manufacturing processes, but
also gives a way to determine places in the process and on the part where sensing
is useful to ensuring that tolerances are mel.

We propose toolpaths with tolerances as an instance of the manufacturing pro-
cess (process plan) that provides a unifying approach 1o dealing with tolerance
and sensing issues across design, manufacturing and inspection. We give exam-
ples of tlerance-based techmiques for manufacturing features and for inspection
purposes. The relation between part error models and tolerance specifications is
outhined. The imtial design of a unitied framework for manufacturing-based sens-
ing strategies for manufacture and inspection is given: the key is to tag tolerances
to the manufacturing process itself (e.g., we use the 1oolpath and tolernmee for NC
milling).

The importance of quantifying tolerance in the specification. design, manufac-
turing snd inspection process is obvious. Unfortunately, adequate representations
ol 1olerance do not exist which permit dialog between these various aspects of
the manufacturing process. This lack is particularly acute in systems which tightly
integrate all of the aspects of prototyping (1.e., manufacturing, design, and sensing
for inspection). We use the tolerance specification in conjunction with knowledge
of the manufacturing process plans to determine more optimized sensing strategies.
We propose 1o avoid the use of weak methods (e.g., comparing nominal geometry
to dense range daty from the actual part), and to synthesize strong process monitor-
ing and inspection strategies based on detailed knowledge of geometry, tolerance
specification, manufacturing leatures and processes, and the sensors mnvolved.

The use of interval Bézier curves for a complete description of approximation
errors was proposed by Sederberg and Farouki [5] (see paper for details). The basic
idea 1s to extend splines o polynomiuls whose coefficients are intervals with well
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defined arithmetic operations. Such splines define a region in space rather than a
curve. This notion captures very nicely the semantics of a tolerance specification.
We huve developed interval curves for both 2D and 3D and algorithms based on
interval splines for machine toolpath representation. We have also implemented
toolpath-hased algorithms for answering tolerance questions in inspection of parts,
and for structuring coarse-to-fine sensing strategies based on tolerance regions
around sensed data,

Our goal is to develop a methodology which helps to guarantee that the intended
tolerance specification is met as efficiently as possible. There issue we address in
our framework is to validate that the tolerances have been achieved in the actual
part that is inspected. This process involves sensor measurements either during the
manufacturing phase or post-manufacture inspection. To ensure that the tolerance
has been met, sensors are used to:

e measure the manufacturing process (e.g., table position during NC milling),

e measure parameters of manufacturing features (e.g., use a coordinate mea-
surement machine to obtain hole diameter), and

e measure points on the surface directly and analyze them.

Of course, sensor error/uncertainty must be accounted for.

In order to structure the analysis process, we focus here on NC milling, and
use the toolpath as the basis upon which design and manufacturing (olerance and
sensor measurements will be compared. Much as operational semantics allows the
meaning of a high level program to be defined in terms of the particular architecture
upon which it executes, so can the CAD specification of a part be defined in terms
of the machining operations which produce its shape. Given the CAD geometry
for a part, a tolerance specification, and a class of NC mill 1o be used, then generic
knowledge aboul such mills can be used to generate @ desired toolpath with its
associated wlerance (eall it 77,), Once a specific mill is selected. then the nominal
toolpath from TP, together with the accuracy of the mill determine the actual tool-
path (call this 7P,). These two toolpaths allow us to determine a great deal about
the efficiency and uncertainty regions of the process. First, it TP,  T¥y s true,
then we know that the tolerance should, in principle, be achieved. If TPy — TP, is
large, then the selected machine may be too precise, and therefore, 100 expensive.
If the boundary of TP, is close to that of TPy this signals places where sensing
may be necessary to guarantee the inclusion relution. This also gives insight into
how uccurate the sensing needs to be. Even if TP, is nol contained in 7Fy, this
approach allows us to estimate what percentage of milled parts will be out of spec,
and thus an informed decision can be made whether 1o tighten the accuracy of the
machine, or where to sense with high probuhility of part error. Thus, the toolpath
representation allows insight into design, manufacture and inspection in & common
framewaork.
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3. Interval Splines and Generalization: Checking that all Points Reach the
Tolerance Goal

3.1. INTERVAL SPLINES

The use of interval Bézier curves for a complete description of approximation
ertors was proposed by Sederberg and Farouki |5]. The basic idea is to extend
splines to polynomials whose coefficients are intervals with well defined arithmetic
operations. Such splines define a region in space rather than a curve. This notion
caplures very nicely the semantics of a tolerance specification, especially when it is
generalized in 3D: if the assumption is made that the sensing error is Gaussian, then
it can be described it by an ellipsoid around each sensed point (using a step value).
Thus, along u sensed toolpath, an offset surface 15 produced (see [3]). We have only
assumed that the enclosing envelopes are described by ellipses in planes orthogonal
to the toolpath. Hence. our algorithm allows for representing volumetric error and
can casily be extended to other shapes than ellipses - which means different offset
surfaces, This approach will require the ability to answer the question: is one ellipse
inside the other one? as fast as possible — when they are in the same plane, The final
test will be to check the reliability of the proposed algorithm on real sensed data,
along manufacturing toulpaths on parts that are inspected.

The algorithm uses a property that is associated with curves of the same degree,
which is the basis of interval splines. Since a Bézier curves of degree k is deduced
from the control point by the recursive cquation (see [4]):

P(r) = P., j=k<i<].
Pl =tPI(n+ (1 =P (1), forO<r<k—1,

Pi(r) = S, when j —k+4r<i < j.

For curves of same degree, if the corresponding control points are on a line (respec-
tively on a plane), then during this recursive process each corresponding 7/ (1) will
also be on a line (respectively on a plane), hence for all ¢ the different evaluations
(81000, 8200), ... will give points on a line (respectively on a plane). An easy way
to ensure that the control points are on a line is (o have initial points on a line too,
since the control points are deduced by a lincar operator.

311, 2D Interval Splines

In our 2D representation, an interval is a set of 3 points (corresponding to the
nominal point and two bounds). The spline interpolation is done (on 6 consecutive
points) separately on each of the 3 corresponding curves (see Figure 1). Note that
evaluation at any parameter ¢ € |0, 1] yields 3 points on a line.

As indicated above, the determination of inclusion of one interval spline within
another is important. Figure 2 shows the case where inclusion is true,

We have developed a technique to answer this question (see Section 3.2.2),
Moreover, if one interval contains another. then the 2D difference of the two inter-
vals is dlso possible to determine.
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Figure 1. One inleryil spline,

Figure 2. TP, C TPy

3.1.20 3D Interval Splines

In 3D, we have assumed that the uncertainty around @ point is described by an
ellipse (in the plane normal 10 the curve). Thus, we also use 3 points 1o describe the
ellipse (X for the nominal point, and X; and X5 the two extreme points along the
two axis of the ellipse). The problem reduces to determining whether one ellipse
15 inside another. We have developed an algebraic solution to this problem (see
Section 3.2.3)

3.2, DESCRIPTION OF THE ALGORITHM

There is no significant difference between the 2D and the 3D algorithm, except for
the part that compares two intervals (respectively two ellipses). Both algorithms
use a procedure to check il the inerval spline from the sensing device (we used a
GRF-2 light stripper scanner) is inside the interval spline of the allowable tolerance
model,
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Figure 3. Included interval spline

3.2.1. Common Fart

To verily that one inlerval spline is inside another, the following three steps are
used:

Step 1. Putting the parameters of the 2 splines together. We want to ensure that for
all 1 the tweo corresponding intervals are on the same line (respectively in the same
plane, for ellipses). We implement a divide and conquer algorithm, using the sign
of:

L 00 B ST o R
B I T o T
) zy =2 I

] [N

Xy Xy Xa
det [y(r) wvp w2 ! oriinthe 3D case) det
| I

Those two determinants are the equations of the lines (or the plane where the
ellipse lies) that correspond to one interval spline, thus the algorithm cuis the sec-
ond interval spline to redefine it (the determinant utilizes the initial points used
to define the first interval spline at the beginning). So there is no need to have two
interval splines of same degree at the beginming, since the second one is completely
rebuilt (with the same degree, and control points on the same line or plane as the
first interval spline). See Figure 3, where | = (a, b, ¢) cuts the interval spline /|
ind, f and ¢ 1 define a new interval: with classical methods, that have to be done
(see [6]),

Step 2. Compare as many intervals as possible, Now that the intervals came to-
gether, this part 1s computable tn O(n), where it is the number of points on a spline
(respectivelly ellipses).

Step 3. When step 2 fails, check if it iy an ending. If not, then the inclusion fails.
This check hus 10 be made as both splines do not necessarily begin or end at the
same e,



194 1M SOBH ET AL

Figure 4. Two anteryal splines,

Figure 5 How to compare two intervals that are not necessarily parallel,

To check an ending, the methods in 2D and 3D are very similar. The method
utilizes the fact that the sign of the determinant of vectors gives the orientation of
such a frame — when it is compared 1o the canonic frame. Hence. comparing two
determinants can decide whether two points are on the same side of a line or a
plane. See Figure 4 for the 2D vectors,

For exumple, in 2D the signs of det(V, Vi) and det(V, V1) are compared. The
same sign means the points are on the same side.

3.2.2. Comparing Two Intervals

Here we check to ensure that 0 = V- V; = [[V[® (i = 1.2). and to check the
angles between the vectors (V, Vi) (1 = 1, 2) (sce Figure 5).



TOLERANCE REPRESENTATION AND ANALYSIS IN INDUSTRIAL INSPECTION 3095

3.2.3. Algebraic Solution to Ellipse Inclusion

If the two ellipses do not intersect and if the center of one is inside the other,
then one is contained by the other one. For the intersection of ellipses, we have
developed an algebraic solution using the Sturm Theorem (see [1 or 2] for more
details).

We assume that the implicit equation of the ellipse with center X, and which go
through the extreme points X, and X, (assumed to he along the 2 orthogonal axis,
hut it is not necessarily the case along the curve) is given by the following: take

- - X - X;—X
Vii= __l,X| - }, and Vs = AL M,
X1 — X1 X2 - X1

then:
M € ellipse <= (XM - V)" + (X0 - V3)" = 1.

We also assume that the second ellipse has the following parametric equation (same
approximation):
i 2l —— (1= lef',
M) =X + —X1 X'+ ——X3X
1427 [+ 72
substituting this point in the implicit equation of the other ellipse gives the fallow-
ing polynomial of degree 4:

(XX Vi +2X X Vi + (1 - ) XX - 7))
+ (XX VXX W+ (1 =) XX ) = (14 1%)

2

The real roots — if they exist - realizes up (o 4 points of intersection of those
2 ellipses. The Sturm Theorem on polynomials suggests an algorithm to find the
number of roots of any polynomial. If this algorithm is applied on a polynomial
with symbolic variables as its coefficients, one can gel 4 condition that determines
when (and only when) the polynomial has a real root. If this is performed on the
polynomial X* + aX? + bX + ¢ we find":

I'=2a' — 8ac + 9b°,

A= 16a"c —4a'b® — 12807 + 144ab*c — 27h" + 2560,

X'+ aX’+bX +¢ hasno real roots if and only if

(@z20and A=0)or(a>0and ' =M or(a <0and T > 0and A > 0),

If the polynomial X* + dX¥ is viewed as the beginning of the expansion of
(X + &) then one can see that an appropriate translation transforms any degree

* Result taken from the course “geometne semic-algébrgue™ from Professor Coste (University
ol Rennes, France), DEA IMA,
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4 polynomial into & polynomiul 74 + a7 + bT + ¢ with T = X — «. For our
problem, the resulting values of @, b and ¢ are given by the equations:

A ==X3X" W, B =2X\X" .V,
Ay =—X3X' - Va, By =2X\ X' Vs,

(XX + X)Wy, Cy= (XX 4+ XX Vi,

A= [A]+ A3 n=\/‘5|-'+n;’. Cz\/(.';' +C3.

then P(r) = eaf* + o3t + eat” + eyt + g with

n
l

a=A=1. s = 2(A B + Aa:Bs),
cs= B+ 2(AC)+ A Ca— 1),
¢y = 2UB\C) + B:Ca), r'n=(":— |

and finally, we can find ¢ and then a. b and ¢

3 s — (T G = 4:".1{.!" — 2w(es — (x‘.m?]
=, W=, b= .
4oy 4 4
ey — et et (e — bega’) —ale dc4a’)
= :
(=]

4. Experimental Results
4.1. TESTS ON SOME MATHEMATICAL CURVES

Tests were carried out both in 2D and 3D, bul since 3D is more relevant 1o this
project (and more difficult) we will only describe the 3D experiments. We have
done some tests on 3D lines, parubolas, and yin curves, surrounded by ellipses that
were wllowed 1o turm around the central curve with different speeds. The tests show
that it is very important to ensure thal the surface do not cross itself, and that the
algonithm will only compare the first connected component of the common part
- thus, if there is an intersection only on the second connected component, the
algorithm will not find L.

We have many results from different mathematical curves, and the algorithm
works as expected, with or without an intersection. Figure 6 shows a case when the
inside surface has been lifted enough to make an intersection. Figure 7 is a regular
case,

4.2, TENTS ALONG THE SENSED TOOLPATH FOR AN INSPECTED COVER PLATE

The algorithm was tried on real sensed data, from the GRE-2 scanner, along a
wolpath rom a manufactured cover plate pocket. Figure 8 shows the part under
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Figure 7. Opened tore with o vertical deformation.

ispection. Figure 9 includes range data from the scanner for the pocket in the
cover plate. Figure 10 shows a CAD maodel for the pockel.

The scanner was not very accurate, so first we recognized pieces of lines and
arcs out of the noisy points from the scanner and defined those as our nominal
curve. This is not a bad approximation, as the NC milling machine too] actually
moves only in straight line and curve segments. For each points from the scanner
we find the closest point to this nominal curve and — eventually — increase the
radius of the sphere around the nominal point to include the point from the scanner.
Finally, we smooth the values from the radius 40 times and define the surface with
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Figure & The machine part under inspection

Fignre 9 Range dan tor the pocket

i
th

Fivure 10, A CAL mode! for the pocket

cireles orthogonal to the path. Our algorithm compares it to the tolerance spline
model, @ few runs produced a good idea of the mimmmum specifications. Notice
that both nominal curves from the model and from the scanner are quite ditferent
al some spatial instances. certainly because of a scale factor or a deformation from
the scanner. Accurate data from a CMM along a toolpath would produce a much
maore precise input tor the algonthm,
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