
Concurrent Design of a Three-link Manipulator Prototype

Tarek M. Sobh, Mohamed Dekhil, Thomas C. Henderson,

Anil Sabbavarapu and Raul Mihali

Department of Computer Science and Engineering

University of Bridgeport

Bridgeport, CT 06601, USA

and

Computer Science Department

University of Utah

Salt Lake City, UT 84112, USA

Abstract

The paper presents an a�ordable and comprehensive robotic model of critical aid

to any engineering school involved in teaching robotics. We present the stages of

designing a three-link robot manipulator prototype that was built as part of a research

project for establishing a prototyping environment for robot manipulators. Building

this robot helped determine the required subsystems and interfaces for building the

prototyping environment, and provided hands-on experience for real problems and

diÆculties that are addressed and solved using this environment. The robot is now

successfully used as an educational tool in robotics and control classes.1

Keywords: Robotics, Prototyping, Control, Design.
1This work was supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a

University of Utah Research Committee grant. All opinions, �ndings, conclusions or recommendations expressed

in this document are those of the author and do not necessarily re
ect the views of the sponsoring agencies.

1



1 Introduction

Teaching robotics in most engineering schools lacks practicality. Usually students spend most

of the time studying the theoretical background and the mathematics, and possibly writing

some simulation programs. In many cases, they do not get the chance to apply and practice

what they have learned using real robots. This is due to the fact that most of the robots

available in the market are either too advanced, complicated, and expensive (e.g., specialized

industrial robots), or toy-like robots which are trivial and do not give the required level of

depth or functionality needed to demonstrate the main concepts of robot design and control.

One of our goals in this project, was to build a robot that is inexpensive, 
exible, easy to

use and connect to any workstation or PC, and at the same time is capable of demonstrating

some of the design and control concepts. We also tried to keep the cost as low as possible,

thus making it available to any engineering school or industrial organization. While a great

part of the theoretical concepts or practical approaches considered in the design stages of the

presented manipulator are nowadays well known and even obsolete, they de�ne the skeleton of

any pro�cient robotics teaching environment.

We consider the main contribution of this work is building URK (Utah Robot Kit) which

is a three-link robot prototype that has a small size and reasonable weight, which is convenient

for a small lab or a class room. URK can be connected to any workstation or PC through the

standard serial port with an RS232 cable, and can be controlled using a software controller

with a graphical user interface. This software applies a simple PID control law for each link

which does not require knowledge of the robot parameters. It can be also used on any electro-

mechanical system that can be controlled by a physical PID controller. The interface enables

the user to change any of the control parameters and to monitor the behavior of the system

with on-line graphs and a 3-D view of the robot showing the current position of the robot.

The paper starts with a brief background of robot design and modules and the related work

in this area. A detailed description of designing and building URK is presented in Section 3.

The communication between the robot and the workstation is discussed in detail in Section 4.

Section 5 shows some results of testing and running URK. Finally, Section 6 includes our

conclusions.

2



2 Background and Related Work

Controlling and simulating a robot is a process that involves a large number of mathematical

equations. To deal with the magnitude of computations, it is advisable to divide them into

modules. Each module accomplishes a certain task. The most important modules, as described

in [2], are kinematics, inverse kinematics, dynamics, trajectory generation, and linear feedback

control.

2.1 Robot Modules

There has been a lot of research to automate kinematic and inverse kinematic calculations. A

software package called SRAST (Symbolic Robot Arm Solution Tool) that symbolically solves

the forward and inverse kinematics for n-degree of freedom manipulators has been developed

by Herrera-Bendezu, Mu, and Cain [5]. The input to this package is the Denavit-Hartenberg

parameters, and the output is the direct and inverse kinematics solutions. Another method

of �nding symbolic solutions for the inverse kinematics problem was proposed in [12]. Kelmar

and Khosla proposed a method for automatic generation of forward and inverse kinematics for

a recon�gurable manipulator system [7].

Dynamics is the study of the forces required to cause the motion. There are some parallel

algorithms to calculate the dynamics of a manipulator. Several approaches have been suggested

in [8, 9, 11] based on a multiprocessor controller, and pipelined architectures to speed up the

calculations.

Linear feedback control is used in most control systems for positioning and trajectory

tracking. There are sensors at each joint to measure the joint angle and velocity, and there

is an actuator at each joint to apply a torque on the neighboring link. The readings from

the sensors constitutes the feedback of the control system. By choosing appropriate gains we

can control the behavior of the output function representing the actual trajectory generated.

Minimizing the error between the desired and actual trajectories is the main concern. Figure

1 shows a block diagram for the controller, and the role of each of the robot modules in the

system.

3



τ

Feedback Control Dynamics

.

..

x

x

x

x
Kinematics

Kinematics

Inverse
and

Generation

Trajectory

Σ

Σ

Σ

Σ System

-+

+ -

+

+
+

+

+

e

k kp v

.

.

e

M

. .

Θ

Θ
τ

V , G , F

’

d
..
Θ

Θ
.

d

Θd

Figure 1: Block diagram of the Controller of a Robot Manipulator.

2.2 Local PD feedback Control vs Robot Dynamic Equations

Most of the feedback algorithms used in current control systems are implementations of a

proportional plus derivative (PD) control. In industrial robots, a local PD feedback control

law is applied at each joint independently. The advantages of using a PD controller are the

following:

� It is very simple to implement.

� There is no need to identify the robot parameters.

� It is suitable for real-time control since it includes few computations compared to the

complicated non-linear dynamic equations.

� The behavior of the system can be controlled by changing the feedback gains.

On the other hand, there are some disadvantages for using a PD controller instead of the

dynamic equations, including:

� It needs high update rate to achieve reasonable accuracy.

� To simulate the robot manipulator behavior the dynamic equations should be used.

� There is always trade-o� between static accuracy and the overall system stability.

� Using local PD feedback law at each joint independently does not consider the couplings

of dynamics between robot links.

4



Some ideas have been suggested to enhance the usability of the local PD feedback law for

trajectory tracking. One idea is to add a lag-lead compensator using frequency response anal-

ysis [1]. Another method is to build an inner loop stabilizing controller using a multi-variable

PD controller, and an outer loop tracking controller using a multi-variable PID controller [13].

In general, using a local PD feedback controller with high update rates can result in acceptable

accuracy for trajectory tracking applications. It was proved that using a linear PD feedback

law is useful for positioning and trajectory tracking [6].

3 Prototyping a 3-Link Robot

3.1 Analysis Stage

This project was initiated by studying a set of robot con�gurations and analyzing the type and

amount of calculations involved in each of the robot controller modules (kinematics, inverse

kinematics, dynamics, trajectory planning, feed-back control, and simulation). This phase

was accomplished by working through a generic example for a three-link robot to compute

symbolically the kinematics, inverse kinematics, dynamics, and trajectory planning; these were

linked to a generic motor model and its control algorithm. This study enabled us to determine

the speci�cations of the robot for performing various tasks, it also helped us decide which parts

(algorithms) should be hardwired to achieve speci�c mechanical performances, and also how

to supply the control signals eÆciently and at what rates.

3.2 Controller Design

The �rst step in the design of a controller for a robot manipulator is to solve for its kinematics,

inverse kinematics, dynamics, and the feedback control equation that will be used. The type

of input and the user interface should be determined at this stage. We should know the

parameters of the robot, such as: link lengths, masses, inertia tensors, distances between

joints, the con�guration of the robot, and the type of each link (revolute or prismatic). To

implement a modular and 
exible design, variable parameters are used that can be fed to the

system at run-time, so that the controller can be used for di�erent con�gurations without

encoding any changes.

5



Three di�erent con�gurations have been chosen for development and study. The �rst

con�guration is revolute-revolute-prismatic with the prismatic link in the same plane as the

�rst and second links. The second con�guration is also revolute-revolute-prismatic with the

prismatic link perpendicular to the plane of the �rst and second links. The last con�guration

is three revolute joints (see Figure 2).

The kinematics and the dynamics of the three models have been generated using tools in

the department (genkin and gendyn) that are supplied with the con�guration of the manipu-

lator and generate the corresponding kinematics and dynamics for that manipulator. For the

trajectory generation, The cubic polynomials method, described in the trajectory generation

section, was used. This method is easy to implement and does not require many computations.

It generates a cubic function that describes the motion from a starting point to a goal point in

a certain time. Thus, this module will provide the desired trajectory to be followed, and this

trajectory will serve as the input to the control module.

The error in position and velocity is calculated using the readings of the actual position

and velocity from the sensors at each joint. Our control module simulated a PID controller to

minimize that error. The error depends on several factors such as the frequency of update, the

frequency of reading from the sensors, and the desired trajectory.

3.3 Simulation

A simulation program has been implemented to study the performance of each manipulator

and the e�ect of varying the update frequency on the system. It helps in �nding approximate

Model (3)Model (2)Model (1)

3

3

d
d

3

222

111

Θ

Θ

Θ

Θ

Θ

Θ

Θ

Figure 2: Three di�erent con�gurations of the robot manipulator.

6



Table 1: Number of calculations involved in the dynamics module.

Additions Multiplications Divisions

Model 1 89 271 13

Model 2 85 307 0

Model 3 195 576 22

ranges for the required torque and/or voltage, and determine the maximum velocity to derive

the necessary type of sensors and A/D conversion. To derive the benchmarks, as described

in the next section, we did not use a graphical interface for the simulator, since the drawing

routines are time consuming, and thus give misleading �gures for the speed.

In this simulator the user can select the length of the simulation, and the update frequency.

The third model was used for testing and benchmarking because its dynamics are the most

diÆcult and time consuming compared to the other two models. Table 1 shows the number of

calculations in the dynamics module for each model.

3.4 PID Controller Simulator

As mentioned in Section 2.2, a simple linear feedback control law can be used to control the

robot manipulator for positioning and trajectory tracking. For this purpose, a PID controller

simulator was developed to enable testing and analyzing the robot behavior using this control

strategy.

Using this control scheme helps in avoiding the complex (and almost impossible) task

of determining the robot parameters for our three-link prototype robot. One of the most

complicated parameters is the inertia tensor matrix for each link, especially when the links are

nonuniform and have complicated shapes.

This simulator has a user friendly interface that enables the user to change any of the

feedback coeÆcients and the forward gains on-line. It can also read a pre-de�ned position

trajectory for the robot to follow. It also serves as a monitoring system that provides several

graphs and reports. The system is implemented using a graphical user interface development

7



Figure 3: The interface window for the PID controller simulator.

kit called GDI.2 Figure 3 shows the interface window of that simulator.

3.5 Building the Robot

The assembly process of the mechanical and electrical parts was done in the Advanced Manu-

facturing Lab (AML) with the help of Mircea Cormos and Prof. Stanford Meek. In this design

the last link is movable, so that di�erent robot con�gurations can be used (see Figure 4).

There are three motors to drive the three links, and six sensors (three for position and

three for velocity), to read the current position and velocity for each link to be used in the

feedback control loop.

This robot can be controlled using analog control by interfacing it with an analog PID

controller. Digital control can also be used by interfacing the robot with either a workstation

2GDI was developed in the department of Computer Science, University of Utah, under supervision of Prof.

Beat Br�uderlin.

8



Figure 4: The physical three-link robot manipulator.

(Sun, HP, etc.) or a PC via the standard RS232. This requires an A/D and D/A chip to

be connected to the workstation (or the PC) and an ampli�er that provides enough power to

drive the motors. Figure 5 shows an overall view of the di�erent interfaces and platforms that

can control the robot. A summary of this design can be found in [3, 4].

4 Robot-computer Interface

The sensor and actuator interface is an essential part of the project. It is concerned with

the communication between the manipulator and the computer used to control it. A resident

program on the SUN can send out voltage values that will drive the motors in a desired direction

(forward or backward), and read values from sensors placed on each link that correspond to

the position of that link. It was obvious that we would need A/D's to convert the values

coming from the motors to digital so that they can be sent to the workstation (where the

control program resides ), D/As to convert the values sent by the program to the actual analog

voltage, and an RS-232 communication to the workstation to send these digital data to and

from the workstation. We need some control of sampling, sending, and receiving data outside

the workstation.

For this purpose, we used an MC68HC11 MCU device which is an advanced single-chip

9



Workstation

PC

PID Controller

3-Link Robot

Analog Control

Digital Control

Simulation
Control
Monitoring

Amplifier
D-A Chip

Figure 5: Controlling the robot using di�erent schemes.

MCU (Micro Control Unit) with on-chip memory and peripheral functions. The EVBU comes

with a monitor/debugging program called BUFFALO (Bit User Fast Friendly Aid to Logical

Operations), which is contained in the MCU ROM. More details about this chip can be found

in [10].

4.1 Analog to Digital Converter

The A/D system is an 8-channel. 8-bit, multiplexed-input converter. It does not require

external sample-and-hold circuit because of the type of charge redistribution technique used.

A/D converter timing can be synchronized to the system clock, or to an internal RC oscillator.

The A/D converter system consists of four functional blocks: multiplexer, analog converter,

digital control, and result storage.

The A/D converter operations are performed in sequences of four conversions each. A con-

version sequence can repeat continuously or stop after one iteration. The conversion complete


ag (CCF) is set after the fourth conversion in a sequence to show the availability of data in

the result registers.

10



4.2 Digital to Analog Converter

For the D/A conversion, we used an 8-Bit microprocessor compatible, double bu�ered DAC0830.

The DAC0830 is an advanced CMOS 8-bit multiplying DAC designed to interface directly with

most of the popular microprocessors. The circuit uses CMOS current switches and control logic

to achieve low power consumption and low output leakage current errors. Double bu�ering

allows these DACs to output a voltage corresponding to one digital word while holding the

next digital word. The DAC can be used in di�erent modes of operation.

5 Testing and Results

5.1 Simulator for three-link Robot

This simulator was used to give some rough estimates about the required design parameters

such as link lengths, link masses, update rate, feedback gains, etc. It is also used in the

benchmarking described earlier. Figure 6 shows the simulated behavior of a three-link robot.

It shows the desired and actual position and velocity for each link and the error for each of

them. It also shows a line drawing for the robot from two di�erent view points.

This simulator uses an approximate dynamic model for the robot, and it allows any of the

design parameters to be changed. For example, the e�ect of changing the update rate on the

position error is shown in Figure 7. From this �gure, it is clear that increasing the update rate

decreases the position error.

5.2 Software PID Controller

A software controller was implemented for the three-link robot. This controller uses a simple

local PID control algorithm, and simulates three PID controllers; one for each link. Several ex-

periments and tests have been conducted using this software to examine the e�ects of changing

some of the control parameters on the performance of the robot.

The control parameters that can be changed in this program are:

� forward gain (kg)

� proportional gain (kp)

11



Figure 6: The output window of the simulator for the three-link robot.

12



Position error, Update Frequency = 150 Hz.

err1.150

Pos. Error

Time

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 2.00 4.00 6.00 8.00 10.00

Position error, Update Frequency = 1000 Hz.

err1.1000

Pos. Error

Time-50.00

-45.00

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

0.00 2.00 4.00 6.00 8.00 10.00

Figure 7: The e�ect of changing the update rate on the position error.

13



� di�erential gain (kv)

� integral gain (ki)

� input trajectory

� update rate

In these experiments, the program was executed on a Sun SPARCStation-10, and the A/D

chip was connected to the serial port of the workstation. One problem we encountered with

this workstation is the slow protocol for reading the sensor data, since it waits for an I/O bu�er

to be �lled before it returns control to the program. We tried to change the bu�er size or the

time-out value that is used, but we had no success in that. This problem causes the update

rate to be very low (about 30 times per second), and this a�ects the positional accuracy of the

robot. We were able to solve this problem on an HP-700 machine, and we reached an update

rate of 120 times per second which was good enough for our robot. Figure 8 shows the desired

and actual position for di�erent test cases using di�erent feedback gains.

6 Conclusion

A prototype 3-link robot manipulator was built to determine the required components for a


exible prototyping environment for electro-mechanical systems in general, and for robot ma-

nipulators in particular. A local linear PD feedback law was used for controlling the robot

for positioning and trajectory tracking. A graphical user interface was implemented for con-

trolling and simulating the robot. The robot proves to be a tool with a distinct didactic and

a�ordable character. Students that have taken robotics courses relying on the prototype and

its design process (as contoured in the paper) consider it essential, report major improvements

in perceiving the �eld of robotics and signi�cant enthusiasm in exploring its endless possibil-

ities. More detailed information pertaining to the robot (design, cost, application, software

and hardware) can be found at http://www.cs.utah.edu/vision/robotics kit.html.

14



Position accuracy when Kp=4, Kg=0.5

desired1.dat

actual1.dat

Position

3Time x 10

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

2.58 2.58 2.58

Position accuracy when Kp=8, Kg=0.5

desired2.dat

actual2.dat

Position

3Time x 10

-140.00

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2.04 2.05 2.06 2.06 2.06

Position accuracy when Kp=3, Kg=0.75

desired3.dat

actual3.dat

Position

3Time x 10-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1.15 1.16 1.16 1.17 1.17

Position accuracy when Kp=5, Kg=1.0

desired4.dat

actual4.dat

Position

3Time x 10-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1.55 1.56 1.56 1.56

Figure 8: Desired and actual position for several test cases.

15



Acknowledgments

We would like to express our thanks to Mircea Cormos, Prof. Sanford Meek, and Prof.

Beat Br�uderlin for helping make this robot come to life.

References

[1] Chen, Y. Frequency response of discrete-time robot systems - limitations of pd controllers

and improvements by lag-lead compensation. In IEEE Int. Conf. Robotics and Automation

(1987), pp. 464{472.

[2] Craig, J. Introduction To Robotics. Addison-Wesley, 1989.

[3] Dekhil, M., Sobh, T. M., and Henderson, T. C. URK: Utah Robot Kit - a 3-link

robot manipulator prototype. In IEEE Int. Conf. Robotics and Automation (May 1994).

[4] Dekhil, M., Sobh, T. M., Henderson, T. C., and Mecklenburg, R. Robotic

prototyping environment (progress report). Tech. Rep. UUCS-94-004, University of Utah,

Feb. 1994.

[5] Herrera-Bendezu, L. G., Mu, E., and Cain, J. T. Symbolic computation of robot

manipulator kinematics. In IEEE Int. Conf. Robotics and Automation (1988), pp. 993{

998.

[6] Kawamura, S., Miyazaki, F., and Arimoto, S. Is a local linear pd feedback control

law eÆctive for trajectory tracking of robot motion? In IEEE Int. Conf. Robotics and

Automation (1988), pp. 1335{1340.

[7] Kelmar, L., and Khosla, P. K. Automatic generation of forward and inverse kine-

matics for a recon�gurable manipulator system. Journal of Robotic Systems 7, 4 (1990),

pp. 599{619.

[8] Lathrop, R. H. Parallelism in manipulator dynamics. Int. J. Robotics Research 4, 2

(1985), pp. 80{102.

16



[9] Lee, C. S. G., and Chang, P. R. EÆcient parallel algorithms for robot forward

dynamics computation. In IEEE Int. Conf. Robotics and Automation (1987), pp. 654{

659.

[10] Motorola Inc. MC68HC11E9 HCMOS Microcontroller Unit, 1991.

[11] Nigam, R., and Lee, C. S. G. A multiprocessor-based controller for mechanical ma-

nipulators. IEEE Journal of Robotics and Automation 1, 4 (1985), pp. 173{182.

[12] Rieseler, H., and Wahl, F. M. Fast symbolic computation of the inverse kinematics

of robots. In IEEE Int. Conf. Robotics and Automation (1990), pp. 462{467.

[13] Tarokh, M., and Seraji, H. A control scheme for trajectory tracking of robot manip-

ulators. In IEEE Int. Conf. Robotics and Automation (1988), pp. 1192{1197.

17


