
 1

 
NEW TRENDS IN PROTOTYPING FOR ROBOTICS AND AUTOMATION 

 
Kok-Meng Lee* and Tarek M. Sobh** 

 
Guest Co-Editors 

 
* George W. Woodruff School of Mechanical Engineering 

Georgia Institute of Technology 
Atlanta, GA 30332-0405 

Tel: (404)894-7402; Fax: (404)894-9342 
email: kokmeng.lee@me.gatech.edu 

 
** School of Engineering and Design 

University of Bridgeport 
169 University Avenue Bridgeport, CT 06601, U.S.A. 

Tel: (203)576-4116; Fax: (203)576-4766 
e-mail: sobh@bridgeport.edu 

 
                              
Abstract 

 
Recent developments in several emerging fields enable us to think of the fields of prototype 

for robotics and automation in new ways and to consider new applications.  Today, besides 
introducing the intelligence directly into equipments/systems through embedded microcomputers 
and providing virtual prototyping through enhanced CAD/CAE facilities, information flow has 
been well regarded as an essential part of the integrated design approach whereby all members of 
the prototype development and manufacturing automation team can work closely together 
throughout the design and manufacturing cycle. This focused issue contains five papers: this 
overview paper, the second and third related to automation, and the last two on robotics.  We 
emphasize on the following two subtopics in this paper:  the first is an overview for the 
development of a theory for prototyping discrete event and hybrid systems; and the second 
highlights elements of prototyping a machine vision for real-time automation applications. 
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1. INTRODUCTION 
During the last two decades, rapid advancements of computer, communication, and control 

technologies have greatly accelerated the efforts of developing novel prototypes and their cost-
effective applications in automation.  Today, besides introducing the intelligence directly into 
equipments/systems through embedded microcomputers and providing virtual prototyping 
through enhanced CAD/CAE facilities, information flow has been well regarded as an essential 
part of the integrated design approach whereby all members of the prototype development and 
manufacturing automation team can work closely together throughout the design and 
manufacturing cycle.   

We decided at the outset of this focus issue on information flow and new trends in 
prototyping for robotics and automation. There are two broadly defined types of information 
essential to ensure the optimum performance of automation; namely, off-line knowledge 
databases and predictive models, and on-line sensing (or real-time feedback).  The former 
provides a baseline of "in-advance" information but if routine deviations are greater than can be 
tolerated, the latter is needed to augment this baseline information for feedback to controllers.  
This focused issue contains five papers: this overview paper; the second and third papers are 
prototyping for automation and the last two are for robotics.  We emphasize on two subtopics in 
this overview paper; namely, the development of prototyping discrete-event and hybrid systems 
and their applications, and prototyping machine vision for real-time automation applications.  
Following this overview paper, Riesenfeld et al. describe a method for automatically generating 
complete process plans, including CNC code, from a high-level shape feature part description. 
Their approach helps designers produce functioning machined parts from their designs, and 
minimizes the time required to design fixture details.  The third paper presented by Khoshnevis 
et al. describes a layered fabrication technique based on a combination of an extrusion process 
and a filling process to automate contour crafting.  Their computer-controlled contour-crafting 
technique, which has a potential to replace traditional plaster handwork and sculpting, uses 
computer control of troweling tools to mechanically create various surface shapes.   Gosselin et 
al. present a rapid prototyping technology for design and fabrication of robotic mechanisms, a 
complex process involving geometric, kinematics, dynamics, and tolerance and stress analysis.  
Using a commercially available CAD package and a Fused Deposition Modeling rapid 
prototyping machine, several examples are given.  In the last paper, Hagras et al. discuss the 
method of prototyping outdoor mobile robots using small lab-based indoor robots (that enable 
rapid on-line and autonomous learning of controllers) to transfer the learnt controllers from the 
indoor prototype to the outdoor vehicles.        

The remainder of this overview paper focuses on two subtopics.  The first is the development 
of a theory for prototyping discrete event and hybrid systems and its applications. Discrete Event 
Dynamic Systems (DEDS) are dynamic systems in which state transitions are caused by internal, 
discrete events in the system.  DEDS are attracting considerable interest, and current applications 
are found in manufacturing systems, communications and air traffic systems, robotics, 
autonomous systems, and artificial intelligence. We also present an overview for the 
development of a simple graphical environment for simulating, analyzing, synthesizing, 
monitoring, and controlling discrete event and hybrid systems. The second is the prototyping 
machine vision for real-time automation applications.  We discuss the problems associated with 
traditional machine vision systems for cost-effective real-time applications, novel alternative 
system design to overcome these problems, and the new trends of modern vision sensors.  
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Modern smart sensors provide the features of a traditional machine vision system at less than 
half of the usual price by eliminating the signal-conversion electronics, fixed-frame rates and 
limited gray-scale quantization. Camera, image-acquisition electronics, and computer are 
integrated into a single unit to allow dynamic access to the CCD without image float or flutter. 
We also present a physically accurate image synthesis method as a flexible, practical tool for 
examining a large number of hardware/software configuration combinations for a wide range of 
parts.  

 

2. DISCRETE EVENT AND HYDRID SYSTEMS 
The underlying mathematical representation of complex computer-controlled systems is still 

insufficient to create a set of models, which accurately capture the dynamics of the systems over 
the entire range of system operation. We remain in a situation where we must trade off the 
accuracy of our models with the manageability of the models.  Closed-form solutions of 
mathematical models are almost exclusively limited to linear system models. Computer 
simulation of nonlinear and discrete-event models provide a means for off-line design of control 
systems. Guarantees of system performance are limited to those regions where robustness 
conditions apply.  These conditions may not apply during startup and shutdown or during periods 
of anomalous operation. 

Recently, attempts have been made to model low and high-level system changes in 
automated and semi-automatic systems as discrete event dynamic systems (DEDS). Several 
attempts to improve the modeling capabilities are focused on mapping the continuous world into 
a discrete one. However, repeated results are available which indicate that large interactive 
systems evolve into states where minor events can lead to a catastrophe. Discrete event systems 
(DES) have been used in many domains to model and control system state changes within a 
process. Some of the domains include the following: Manufacturing, Robotics, Autonomous 
Agent Modeling, Control Theory, Assembly and Planning, Concurrency Control, Distributed 
Systems, Hierarchical Control, Highway Traffic Control, Autonomous Observation Under 
Uncertainty, Operating Systems, Communication Protocols, Real-Time Systems, Scheduling, 
and Simulation. 

A number of tools and modeling techniques are being used to model and control discrete 
event systems in the above domains. Some of the modeling strategies include: Timed, untimed 
and stochastic Petri Nets and State Automata, Markovian, Stochastic, and Perturbation models, 
State Machines, Hierarchical State Machines, Hybrid Systems Modeling, Probabilistic Modeling 
(Uncertainty Recovery and Representation), Queuing Theory, and Recursive Functions. 

Sections 2 and 3 present a brief review for prototyping discrete event and hybrid systems, 
discuss some techniques used in the DEDS field, and present a simple software prototyping tool 
for representing hybrid DES. 

 

2.1 Hybrid and Discrete Event Systems 
Discrete event dynamic systems (DEDS) are dynamic systems in which state transitions are 

triggered by the occurrence of discrete events in the system. DEDS are suitable for representing 
hybrid systems, which contain one or more of the following characteristics: 
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• continuous domain,  
• discrete domain,  
• chaotic behavior, and  
• symbolic parameters. 

Some examples of DEDS are 
Data Network: A ={send, receive, timeout, lost} 
Shop with k jobs: A={admit_job, job_finished} 
Electric Distribution: A= {normal, short_circuit, over_current} 

There are several frameworks that can be used to model DEDS such as: finite automata, Petri 
nets, Markov chains, etc.  Choosing one of these frameworks depends on the nature of the 
problem being modeled and the implementation techniques available to implement this model.  

DEDS has been applied to model many real-time problems and has been involved in different 
types of applications. Some of these applications are: 

• networks, 
• manufacturing (sensing, inspection, and assembly), 
• economy, 
• robotics (co-operating agents), 
• hghway traffic control, and 
• operating systems. 

For more details about DEDS applications see [1, 2, 4, 5, 6].  We believe that DEDS will have an 
important role in the development and improvement of many other applications in different 
disciplines. 

 

2.2 Discrete Event Models 
As mentioned before, there are several representations and frameworks used in DEDS 

modeling. Some of these frameworks are: 
• automata (untimed, timed, temporal, stochastic), 
• push-down automata, µ-recursive, and turing machines, 
• Petri nets (timed, untimed), 
• markov chains, 
• queuing theory, 
• min-max algebra, 
• uncertainty modeling, and  
• classical control. 

These frameworks can be categorized in three different domains:  

Timed vs. untimed models: the untimed models emphasize the �tate-event sequence� of a 
DEDS and ignore the holding time of each state, while in the timed models, �time� s an 
essential part of the model. 

Deterministic vs. probabilistic models: deterministic models assume pre-knowledge of the 
sequence of events that will occur at any time, while probabilistic (stochastic) models 
associate probabilities with each event. 
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Computational model: which can be logical models in which the primary questions are of 
qualitative or logical nature, while algebraic models can capture the description of the 
trajectories in terms of a finite set of algebraic operations.  Finally, performance models are 
formed in terms of continuous variables such as average throughput, waiting time, etc. 

Figure 1 shows the different models of representing DEDS and their characteristics. More 
about DEDS models can be found in [3]. 

 Timed Untimed 

Logical Temporal Logic 
Timed Petri Nets 

Finite State Machines 
Petri Nets 

Algebraic Min-Max Algebra Finitely recursive proc. 
Comm. sequential proc. 

Performance
Markov Chains Queuing Networks 
GSMP/Simulation 
Stochastic Petri Nets 

 

 Stochastic→ ←Nonstochastic 

Figure 1 Different Models for DEDS 

2.3 Evaluation of DEDS 
The evaluation of each framework can be done in four dimensions: 
• Descriptive power 

- Language complexity  
-  Algebraic complexity, 

• Implementation 
• Performance evaluation 

-  Logical correctness 
-  Real-time requirements, and 

• Applications 

Language complexity is based on the formal theory of languages. Each FSM generates a 
language L which represents all possible traces of this FSM. 

L(FSM) ⊂  L(Petrinets) 

So, Petri nets is more language complex than FSM. 

Algebraic complexity is based on the systems theory. We can consider any algebraic system as a 
set of models and a set of operators that map one or more model to another.  For example, in 
transfer functions, addition and multiplication reflect serial and parallel systems. 

Logical correctness is a desirable property of the traces generated by any DEDS model.  For 
example, in the data network example, we must guarantee that each transmitted packet has 
been received correctly by the receiver. 

Real-time requirement is a desirable property of the real-time response of the actual system. It is 
necessary to embed the DEDS model in a real-time environment. 
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3.  A SIMPLE PROTOTYPING TOOL 
We have built a software environment to aid in the design, analysis and simulation of 

Discrete Event and Hybrid Systems.  The environment allows the user to build a system using 
either Finite State Machines or Petri-Nets.  The environment runs under X/Motif and supports a 
graphical DES (Discrete Event System) hybrid controller, simulator, and analysis framework. 
The framework allows for the control, simulation and monitoring of dynamic systems that 
exhibit a combination of symbolic, continuous, discrete, and chaotic behaviors, and include 
stochastic timing descriptions (for events, states, and computation time), probabilistic transitions, 
controllability and observability definitions, temporal, timed, state space, Petri-nets, and 
recursive representations, analysis, and synthesis algorithms. 

The environment allows not only the graphical construction and mathematical analysis of 
various timing paths and control structures, but also produces C code to be used as a controller 
for the system under consideration. 

Using the environment is fairly simple. For finite state machines the designer uses the mouse 
to place states (represented by ovals) and connect them with events (represented by arrows). 
Transitions and states can be added, moved and deleted easily.  Figure 2 is an example of a 
simple stochastically timed FSM, containing 4 states and 5 events. 

 
Figure 2 A Stochastically timed FSM window during analysis 

The probabilities on the events (that is, which path to navigate in the automaton) are 
designated using the marked field in the status dialog box.  The different timings (on event and 
state times) and distribution function type, mean and variance can be assigned through the status 
dialog box too. The allowable distributions are currently restricted to Gaussian and exponential 
functions, but can be easily extended to arbitrary discrete or continuous distributions.  A window 
shows the distribution function at a state or event, and also allows the user to do queries: for 
example, queries on whether a path time probability is greater or less than a given time, or 
combined timing distributions to reach a goal state through various paths, etc.  The dialog box 
allows the user to perform queries of various kinds.  The currently selected state/event is drawn 
with a dashed line, and the information in the status window pertains to it. Optimizing paths 
based on stochastic timing can also be performed; in that case, windows will pop out with the 
event path, and the status window will have the combined distribution function.  Figure 3 
presents an automaton model in the environment. The environment also produces C code for 
controlling the system under consideration. In our PN model we have extended the definition of 
stochastic timed Petri Nets, to have additional timings.  Our model has three times associated 
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with it, a place time, a delay time, and an event time (see Figure 4).  The place time is a time 
where the token is held back and delays the enabling of the transition.  This represents the 
computation time of that place.  The delay time is a time associated with the input arcs to a 
transition.  It represents the time to leave the corresponding place.  The event time is analogous 
to the single time in stochastic timed Petri Nets which is called firing time.  We believe that this 
lends to a more intuitive representation of the times and simplifies the modeling task since it 
captures more details than the original timed Petri net model. 

 
Figure 3 A snap shot of the FSM environment 

 
We can define the new model as: 

PN = (P,T,A,W,x0) 
where 

P = set of places with associated random variables; 
T = set of transitions; 
A = Ain ∪  Aout with 

- Ain set of elements from {P x T} with associated random variables; 
- Aout set of elements from {T x P}; 

W = a weight function, w:A →{1,2,3,�}; and 
x0 is an initial marking.  

The environment for Petri Nets is similar. Circles, transitions by ellipses, and arcs by arrows 
represent places graphically.  As mentioned above, there are three locations where one can place 
timing information: on the events- the event time, which is the time the actual event takes; place 
time- when a token is moved through a transition firing there is a place time which hides the 
token until it has expired; and the final time is a delay time which comes into effect when a 
transition fires- it is the time for the event to reach the transition.  The event time will not start 
until all of its input tokens delay time has expired. Figure 5 depicts a snap shot of the Petri Net 
environment in action. 

The system generates C code for the user hybrid system, so one can simulate and control an 
actual system using the code.  The C code is currently generated for FSMs (soon code will be 
generated for PN's too).  A Petri Net will be converted to a FSM before code is generated; all of 
the timing is then placed on the events.  The user has to select the initial state, and provide the 
function for simulating/generating the events; the code will keep track of the elapsed simulated 
time, and will return when it reaches a state with no transitions.   
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The environment allows conversion back and forth between the FSM and PN models.  
Conversion to a Petri Net is straight forward, but one loses the event probabilities. The only thing 
that's needed is to create a transition for every event.  Conversion from a Petri Net to a FSM is 
only possible if the PN is k-bounded, which means no place can ever have more than k tokens.  
The system generates a state for every possible marking of that net.  The states are represented as 
the marking; the events are just the transitions.  The three "times" are pushed into the events. The 
system convolves the maximum of the input delays with the event, and the maximum of the 
place times.  The maximum function is a standard convolution, except that the maximum is used 
instead of multiplication. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 The proposed three time zones for a timed Petri Net 

  
Figure 5 A snap shot of the Petri Net environment 

The algorithm for generating all of the markings starts with some initial marking, and then 
goes through all of the possible transitions.  If it can fire, the firing is simulated, and the new 
marking is inserted into the set of states. If it is already represented, the transition is kept; 
otherwise the transition is kept and recursion is done with the new marking.  This process is 
repeated until no transitions can be fired. 

Our system can serve as a simple graphical simulator, analyzer, synthesizer, monitor, and 
controller for hybrid systems models using either Petri Nets or FSMs high-level frameworks. 

 

 

Place Time 

Delay Time 

Event Time 



 9

4. TRENDS IN MACHINE VISION SYSTEM DESIGN 
The predictive model provides a baseline of "in-advance" information, but if routine 

deviations are greater than can be tolerated, sensors are needed to augment this baseline 
information for feedback to controllers. In existing systems, estimates of the impact of sensing 
systems on process performance indicate as much as a six fold increase in effective operation 
speed [7].   A general review of different sensors for robotics and automation can be found in [8].  
One of the major contributions of information technologies to sensors was the idea of digitized 
output, which removed analog variation from the outputs.  A good illustrative example is 
machine vision, which grows from a standard composite video signal that the television industry 
uses, to a more general-purpose sensor with on-board intelligence.   

However, although it has been well recognized in the past three decades that vision can add 
considerably to flexibility by simplifying grippers, component feeders, and location tooling, and 
can reduce the engineering time required to implement it, the capabilities of commercial vision 
systems for use in part verification, kitting, and presentation for robotic assembly are still very 
limited.   Until the late 1980's, most of the vision systems employed a camera that outputs a 
video signal limited by the traditional TV standard (typically 30 frames per second specified by 
the RS170 established in the 1950's) and an object-dependent structured illumination.  For use as 
a robot vision system, a frame grabber board and a high performance host computer must 
accompany the video camera. The conventional vision approach generally discards color 
information and requires a substantial amount of memory and data communication time, and 
sophisticated vision interpretation. Variations in surface reflectance, coupled with algorithm 
computational demands, often make the conventional approach too expensive, unreliable, and 
slow. In addition, the conventional vision approach, which attempts to emulate human eyes and 
brain, does not necessarily yield the accurate data required by the robots. 
 

4.1 Alternative Vision System Architecture 
To overcome the problems associated with the traditional video-based vision system, several 

vision systems were designed for robotic applications.  Among these is a Flexible Integrated 
Vision System (FIVS) developed at Georgia Tech in the late 1980�s [9], which offers 
performance and cost advantages by integrating the imaging sensor, control, illumination, direct 
digitization, computation, and data communication in a single unit. By eliminating the host 
computer and frame grabber, the camera is no longer restricted by the RS-170 standard and thus 
frame rates higher than 30 fps can be achieved. 

Architecture 
As shown in Figure 6, the central control unit of the flexible integrated vision system is a 

microprocessor-based control board.  The design is to have all of the real-time processing 
performed using the microprocessor control board without relying on any other system or 
computer.  The prototype of FIVS is shown in Figure 7. 

On-board processor 
The DSP-based control board is designed to communicate with several option boards in 

parallel to tailor the system for a number of applications.  Each of these option boards is 
controlled independently by a programmable logic device (PLD), which receives a peripheral 
select signal, a read/write signal, and an address signal from the microprocessor control board.  
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Typical examples of the option boards for the FIVS are the digital video head, a real-time video 
record/display/playback board, and an expandable memory board. 

Camera 
The video head consists of an m x n CCD array, the output of which is conditioned by a high 

bandwidth amplification circuitry. The output is then sampled by a "flash" analog-to-digital 
converter (ADC).  The DSP-based control board provides a direct software control of the CCD 
array scanning and integration time, the intensity of the collocated illumination, and the real-time 
execution of a user-selectable vision algorithm imbedded in the EEPROM.  In operation, the 
PLD decodes the control signals to initiate row shifts and column shifts in response to commands 
from the DSP-based control board.  Particular row shifts and column shifts enables retrieving 
only a specific relevant area from an image.   The PLD also provides control signals to ADC for 
performing the analog-to-digital conversion synchronized with row shifts, and enables the video 
buffer when the DSP reads or writes data to the VRAM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Schematic of a flexible integrated vision system 
 

 
Figure 7 FIVS and its collocated illumination system 
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Imbedded software 
The vision system imbedded software gives users the flexibility to control the CCD array 

scanning and integration time and the intensity of the illumination.  With the CCD under 
software control, partial frames can be "captured" instead of the customary full frame, reducing 
the cycle time required to capture and process an image.  The ability to shift out partial frames is 
ideal for high speed tracking applications where the approximate location is known from a prior 
image.  By reducing the time to capture an image, the effective frame rate is increased.  For 
example, shifting out 1/4 of an image can increase the frame rate up to 480 fps, not including the 
time required for illumination and image processing.  This frame rate is 16 times the rate 
achievable from the RS-170 standard. 

4.2 The New Trends  
Unlike conventional RS170-based systems which require pixel data to be stored in a video 

buffer before processing of pixel data can commence, the FIVS design provides an option to 
completely bypass the video buffer and thus offers a means to process and/or to store the 
digitized pixel data by directly transferring the ADC output to the DSP.  For real-time vision-
based object tracking and motion control system applications, the scheme represents a significant 
saving in time and video buffer size required for processing an image.  As an illustration, 
consider an image array of m x n pixels. The time needed to store the entire image (with no 
computation) in a memory at K MHz is (m x n)/K µs and requires (man) bytes of memory.  
Typical array size of a CCD ranges from 200x160 to 4096x4096 of pixels.  The corresponding 
video buffer and time required simply to store the entire image at a clock rate of 10 MHz would 
range from 32K bytes to 16M bytes and 3.2 ms to 1600 ms respectively!  Clearly, the option to 
completely bypass the video buffer offers a potentially useful solution to eliminate the frame 
storage prerequisite which is often required in conventional vision systems. Furthermore, this 
scheme completely eliminates the special hardware needed in acquiring the digitized pixel data 
for storage. 

Applications 
With the on-board intelligence, computer controlled machine vision systems have found a 

number of real-time applications, where the accuracy of image gray-scale pixel values far 
outweighs image.  Some of these examples are robotic part pickup [10], motion tracking [11], 
three degrees-of-freedom orientation sensing [12], servo-track-writing in hard disk drive 
manufacturing [13], disassembly automation [14], and haptic sensor [15].  

The advance in direct-digital machine vision will continue to lead to new ways of addressing 
industrial automation problems that were difficult (if not impossible to solve), particularly for the 
traditional industries.  One such example is an on-going development of a high-speed live-bird 
handling system for poultry processing applications, where machine vision has played a 
significant role in automating the process of transferring live birds from a moving conveyor to 
shackles, typically at a line speed of 3 birds/second. Live-bird handling problems have been 
found difficult because the birds tend to flail about when they are caught. Non-evasive 
techniques must be developed along with the study of stimulus environments to promote 
behavior compliance, the study of the role of visual responsiveness, and the evaluation of vision 
acuity in different spectral environments.  Often such real-time control application requires a 
stringent combination of structured illumination, reflectance, and imaging sensor. 
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Structured illumination and reflectance of a machine vision system could play a significant 
role in the live-bird handling application [16], where the bird�s posture is determined for real-
time manipulation of the bird�s legs.  In order to keep the bird from flailing and its presentation 
uniform as the bird enters the grasper, retro-reflective sensing technique [10] has been used to 
obtain a snap shot of the moving bird. The structured illumination system consists of a low-
intensity spectrally filtered illumination that insensitive to the bird, and a vision system that 
captures a snap shot of the bird against a retro-reflective background. Figure 8 shows an image 
of a bird on a conveyor moving at 0.5m/s toward the grasper.  The image of he bird was captured 
against a 580-85 Black Scotchlite retro-reflective background with a low-intensity illumination 
filtered with a Roscolux full-blue filter since birds� are insensitive to blue light (or low 400nm 
wavelengths).   

  
Black Retroreflective background 

Broiler 
(white-color) 

Low blue illumination
 

Figure 8: An example with structured illumination/reflectance (snap shot of a live bird) 

Advances in New Imaging Sensors      
In the early 1990's, CMOS sensors emerged as low-cost, low-power alternatives to CCD.  

The principle architectural solutions, which enabled the high data throughput, are the effective 
integration of pixel readout processing, ADC conversion, and the high-speed dual-port RAM in 
one single chip.  The core of the CMOS sensor designs is an m x n photodiode active pixel array, 
which is accessed in row-wise fashion and readout into a column ADC's in parallel. With the 
addition of a column of dual-port SRAM's, the readout of the digital data can be done during the 
A/D conversion of the next row.  The sensor has an on-chip digital block, which runs the row 
processing, ADC conversion, and readout and allows flexibility in selecting rows and columns as 
well as defining the start time for row processing or read.  The use of parallel pixel readout and 
digitizing, as well as easy ways of multiplexing/de-multiplexing data- techniques required for 
high-speed large format sensors- is challenging CCD technology in mainstream applications. 
Today, CMOS sensors, for example the 1024x1024 CMOS Active Pixel Sensor [17], has the 
potential to achieve very high output data rate over 500MB/second and a low power dissipation 
of 350mW at a clock rate of 66MHz.  

Attempts to emulate human visual perception have led to the development of high dynamic-
range color (HDRC) imaging systems [18]. The power of human visual perception lies in its very 
high dynamic range, its robust object detection due to high and constant contrast resolution in 
both bright and dark regions of a scene.  Natural photoreceptors like those in our eye have a 
logarithmic response that detects very fine absolute steps in the dark or shade while they limit 
their response to larger absolute steps at high intensities.  HDRC CMOS pixel generates an 
output voltage equivalent to the log of the local optical intensity. As a result, the high dynamic-
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range of the HDRC camera outperforms the digital CCD camera that has reached its limits in 
spite of its advantage in resolution and all its post-processing power. 

Computing and Integration   
The recent introduction of microprocessors with large internal caches and high-performance 

external memory interfaces make it practical to design high-performance imaging systems with 
balanced computational and memory bandwidths. Sgro et al [19] presents a framework that 
allows a developer to choose a microprocessor system that offers the performance and scalability 
often required by a real-time vision application.  Using the component inspection application as 
an example, they demonstrate that coprocessor-based solutions with local memory architects 
allow throughput to scale linearly as the number of processors increase.  For demanding vision 
applications, especially those that require future expansion, the most practical solution remains a 
co-processor board that is more scalable, has higher throughput, and ultimately is cheaper than 
the native solution. 

Finally, one other potential impact is the influx of low-cost USB and Firewire cameras into 
the lucrative consumer market that drives the development of the USB [20] and IEEE 1394 [21] 
(commonly known as Firewire) communication standards.  The USB standard was designed to 
replace typical parallel and serial I/O ports (such as RS232) and has been widely accepted by the 
PC industry.  Future USB 2.0 is expected to have a speed over 120-240 Mbps.  The IEEE 1394 
standard was designed as a high-speed bus with digital video as its target application.  The bus 
currently runs at speeds up to 400 Mbps and expects to exceed 1600 Mbps in the near future.  
 
 
5. PROTOTYPING MACHINE VISION DESIGN  

Imaging sensors are characterized by their specific bandwidths or wavelengths of light, 
which maximize the sensor response and will provide it an optimum operating environment.  It is 
desired that the photo-detector respond only to the light from the illumination source structured 
for the object but not that of ambient lighting. Synthetic images [22] can efficiently be used to 
study the effects of illumination and vision system design parameters on image accuracy, 
providing insight into the accuracy and efficiency of image-processing algorithms in determining 
part location and orientation for specific applications, as well as reducing the number of 
hardware prototype configurations to be built and evaluated. Figure 9 compares the processes 
used to generate synthetic images for (a) photo-realistic and (b) physically-accurate synthetic 
images for vision system applications.  

As shown in Figure 9, an accurate mathematical model is needed to describe the physical 
scene and the vision system used to capture that scene.  This model is used to simulate scene 
illumination, which is represented as an array of [pixel] radiances. This array of radiances is then 
converted to energy/area values, which are transformed by a mapping based on a model of the 
system sensor and how it converts incident light energy into gray-scale values. 

The physically accurate synthetic image is simulated in a two-step process.  In the first step, 
RADIANCE, a freely-distributed software package from the Lighting Systems Research Group of 
the Lawrence Berkeley Laboratory, is used to solve the radiative heat transfer equation.  In the 
second step, the sensor model for the computer vision system is modeled using a power law [10]. 

Figure 10 quantitatively compares various methods of generating synthetic images, where 
synthetic images of the retroreflective background were generated and compared to a captured 
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image of the retroreflective field (Figure 10).  As seen in Figure 10(a), a CAD-generated image 
assuming an ideal diffuse surface results in an image that is nearly black.  Figure 10(b) illustrates 
RADIANCE�s ability to model the retroreflective background; however, the illuminated area is 
too small and too sharply defined.  Incorporation of the finite aperture (Figure 10(d)) results in 
an image with a more acceptable transition between the illuminated and non-illuminated areas, 
but the illuminated area is still too small.  The importance of accurate source emission 
distribution modeling is shown in Figure 10(c). Other detailed illustrative examples of using 
physically-accurate synthetic images can be found in [23]. 
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Figure 9 Model of the synthetic imaging process 
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Figure 10. Synthetic images of retroreflective field 

 
The benefits of this realistic image synthesis are three-fold.  First, it provides a rational basis 

for designing the hardware and software components of a machine vision system.  Secondly, it 
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provides a standard platform for comparing algorithms and predicting the optimal algorithm (and 
optimal performance) for a specific application.  Additionally, it provides an opportunity to 
perform an in-depth study of the factors that can significantly degrade the performance of image-
processing algorithms and aid in the determination of critical design parameters.  A third benefit 
is the ultimate development of a well-designed CAD-tool which utilizes physically-accurate 
synthetic images to accurately and inexpensively predict the performance of a proposed vision 
system design prior to implementation or the construction of a prototype, minimizing the need to 
build and test a large number of hardware configurations.  Such a tool also allows necessary 
changes in part design to be made earlier in the design phase, significantly reducing 
implementation time and improving industrial reliability. 

 

5.  CONCLUSIONS 
We have presented trends of prototyping design and automation with an emphasis on the 

following two subtopics. The first is a brief review of Discrete Event and Hybrid Systems 
prototyping. A simple software environment system was developed for simulating, analyzing, 
synthesizing, monitoring, and controlling discrete event and hybrid systems.   

The second is a review and the trends on prototyping real-time machine vision system 
design.  Specifically, we present an alternative system design to overcome those problems 
associated with a traditional video-based vision system, which is a physically-accurate image 
synthesis method as a flexible, practical tool for examining a large number of hardware/software 
configuration combinations for a wide range of parts.  
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