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Abstract

This paper addresses the application of discrete event dynamic systems (DEDS) for autonomous sensing and
inspection as part of the reverse engineering process. A dynamic recursive context for DEDS is presented and its
usage [or managing a complex hybrid system which has continuous, discrete and symbolic aspects is illustrated. We
suggest that the dynamic recursive context is aptly suited to controlling and observing the active inspection of
machined parts using such a hybrid system.
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1. Introduction

Reverse engineering is the process of constructing an accurate representation from sensed data. It can
be represented by a closed loop system that consists of four main modules:
e Sensing,
¢ CAD Modelling,
® Manufacturing,
# Inspection.
This closed loop system is the framework we used to develop an integrated CAD /CAM /sensing system
for inspection and reverse engineering. The process starts by constructing an initial CAD model using
2-D and 3-D vision, then the inspection module uses this model to drive a coordinate measuring machine
(CMM). The results are used to increase the accuracy of the model. Additional sensing iterations could
be made until the desired accuracy is obtained. Fig. 1 shows this closed loop system.

Most research in reverse engineering ([20,16,12,13,14,8,9]) concentrates on the sensing and fitting
techniques required. Hsich [15] describes a system which does sculptured surface reconstruction with a
CMM. The focus of the work is on path planning and surface fitting. If errors occur while gathering data,
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Fig. 1. Closed loop system for reverse engincering.

the system aborts and must be restarted. Van Thiel [30] describes an interactive CMM inspection system.
The user is included as part of the control loop, and can abort inspections and call for explorations of
particular features. This paper describes an approach that automatically gathers the sense data,
processes il, and makes decisions based upon it for reverse engineering.

We use a recursive dynamic strategy for exploring machine parts, A discrete event dynamic system
(DEDS) framework is designed for modeling and structuring the sensing and control problems. The
dynamic recursive context for finite state machines (DRFSM) is a DEDS representation tailored to the
recursive nature of the mechanical parts under consideration. For details about applying DEDS to
various areas, see [3,18,10,2,22,21]. Some books on the subject include [11,7,1,4].

DRFSM is particularly useful for controlling the inspection module, and this has been an important
aspeet of our research.,

2. Discrete event dynamic system control

Several representations can be used to model DEDS such as: finite automata, Petri nets, Markov
chains, and queueing theory models. We chose finite state automata with partially observable events o
model our system since it is suitable for the nature of this problem [17,5,19,24]. The discrete events that
occur in the system trigger state transitions. Subsets of transitions can be disabled or enabled by the
controller, depending on the application.

An example of a high-level DEDS controller for part inspection can be seen in Fig. 2. This finite state
machine has some observable events that can be used to control the sequencing of the process. The
machine remains in state A until a part is loaded. When the part is loaded, the machine transitions to
state B where it remains until the part is inspected. If another part is available for inspection, the
machine transitions to state A to load it. Otherwise, state C, the ending state, is reached. If an
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o. <loading parc-

<inspect>
<Iinterrupt>

<next part>

<inspecting>

<interrupt>

Fig. 2. A simple FSM.

<done>

interruption occurs, such as a misloaded part or inspection error, the machine goes to state D, the error
state.

Our approach uses DEDS to drive a semi-autonomous visual sensing module that is capable of
making decisions about the state of the inspection (e.g. the relation of the CMM probe to the part). This
module provides both symbolic and parametric descriptions which can be used to interrupt the
inspection or move to a new mode of inspection.

The applications of this work are numerous, including automatic inspection of mechanical or
electronic components and reproduction of mechanical parts. The experience gained in applying DEDS
to the inspection problem will allow us to study the subdivision of the solution into reliable, reversible,
and an easy-to-modify software and hardware environments.

2.1. Modeling and constructing an observer

A DEDS framework is used to model the tasks that the autonomous observer system executes. This
model is used as a high level structuring technique to preserve and make use of the information we know
about the way in which a mechanical part should be explored. The state and event description is
associated with different visual cues; for example, appearance of objects, specific 3-D movements and
structures, interaction between the touching probe and part, and occlusions. A DEDS observer serves as
an intelligent sensing module that utilizes existing information about the tasks and the environment to
make informed tracking and correction movements and autonomous decisions regarding the state of the
system.

To be able to determine the current state of the system we need to observe the sequence of events
occurring in the system and make decisions regarding the state of the automaton. State ambiguities are
allowed to occur, however, they are required to be resolvable after a bounded interval of events. In a
strongly ourpur stabilizable system, the state of the system is known at bounded intervals and allowable
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Fig. 3. Bad upprouch vector,

events can be controlled (enabled or disabled) in a way that ensures return in a bounded interval to one
of a desired and known set of states.

One of the objectives is to make the system strongly output stabilizable and /or construct an observer
to satisly specific task-oriented visual requirements. Many 2-D visual cues for estimating 3-D world
behavior can be used. Examples include: image motion, shadows, color and boundary information. The
uncertainty in the sensor acquisition procedure and in the image processing mechanisms should be taken
into consideration to compute the world uncertainty.

2.2, Error states and sequences

The observer framework can be utilized for recognizing error states and sequences. This recognition
task will be used to report on visually incorrect sequences. In particular, il there is a pre-determined
observer model of a particular inspection task under observation, then it would be useful to determine if
something goes wrong with the exploration actions. The goal of this reporting procedure is to alert the
operator or autonomously supply feedback to the inspecting robol so that it can correct its actions.

Some cxamples of errors that might occur while inspecting based on a reverse engineered model
include:

e occlusions beiween the observer camera and the part or probe;
 inappropriate approach vector position or orientation (see Fig. 3);

Fig. 4. Probe diameter too large.



T. Sobh et al. / Robotics and Autonomous Systems 13 (1994) 153-171 157

B

G

Fig. 5. A hierarchy example.

¢ inappropriate probe size (see Fig. 4);

e motion too rapid;

« motion too slow (“frozen” or “timeout”).

The correct sequences of automata state transitions can be formulated as the set of strings that are
acceptable by the observer automaton. This set of strings represents precisely the language deseribing all
possible visual 1ask evolution steps.

3. The dynamic recursive context for finite state machines

The dynamic recursive context for finite state machines (DRFSM) is a form of DEDS which is
specifically adapted to representing multi-level recursive processes. Multi-level processes are any tasks
which are done repetitively with different parameters.

DRFSM can be used to exploit the recursive nature of many machined parts. Many machined features
have similar inspection strategies. By using the same strategy for different features within a complicated
part, we can reduce the number of control states needed to inspect it to a manageable amount.

3.1. Recursive representation for machine parts

We propose a representation for machine parts which is composed of open and closed contours and
the relationships between them. For example, the relations between the enclosed areas of the contours
shown in Fig. 5 would be expressed as follows:

BCA,
CCcA,
D cCB,
DcCA,
EcB,
EcCA.

These relations can be represented by a graph, see Fig. 6. Using a depth-first search, a string
representation can be obtained from this graph. This string can be represented by a tree as shown in Fig.
7. This string will guide the DRFSM to explore this part recursively. The string representation for the
above example will be:

A(B(D(), £()), €().



158 T. Sobh et al, / Robotics and Autonomous Systems 13 (1994) 153-171

Fig. 6. The graph associated with the example,

OO

Fig. 7. The tree associated with the example.

The algorithm used to determine these relationships was based on region growing. To determine if a
feature, F,, lies within another, /7, the outlines of both features are copied into a blank image. If F,
overwrites F, (as was the convention in our system), border intersections will be considered inside. !

Each pixel in the outline of F, is then “grown” in 4 or 8 directions, marking pixels as visited, stopping
when one of the following is encountered:

e F.’s outline,

& a previously visited pixel,

s the image border.

If the image border is not encountered, F, is within F,.

This method depends upon F, being a closed curve, with the boundary 4- or 8-connected (depending
upon the growing algorithm). Additionally, /, must be at least one pixel away from the image border.
Advantages of this algorithm are that it is not necessary to determine if any particular pixel is inside or
outside of F, and that F, need not be closed.

VIf F, overwrites F, (an cquully valid convention), border intersections will cause F, 10 become an open curve, ensuring that
F.=cF.
I 2
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Fig. 8. F, inside F,.

Fig. 9. Fy outside F,.

Fig. 10, Intersection, F| not inside F,.

The right side of Fig. 8 shows the result of applying this algorithm to test if a curve, F,, is inside
another curve, F,. The growth of F, is completely blocked from reaching the image boundary by F,. In
Fig. 9, F, grows to the border and is thus considered 1o be outside. Fig. 10 shows the case when F, and
F; intersect. F's growth fills the entire image, both inside and outside of F,.
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3.2, Definitions

Variable transition value: Any variable value that depends on the level of recursion. In our experiments,

wEe use two:

— V1 is the distance threshold that determines whether the probe is considered to be close or far from
a feature,

— F2 is the allowable length of time for the machine to wait for an event to occur.

Variable transition vector (VTV): The vector containing all variable transition values, and is dynami-

cally changed in the event of a transition to a different level of recursion. For example, to begin

exploring a feature that is “contained” within another, the cach value in the VTV should be updated

to reflect the new feature’s scale.

Dead-end state: A state that does not call any other state (no transition arrows come out of it). In

DRFSM, when this state is reached, it means to go back to a previous level, or quit if it is the first

level. This state is usually called the Error-trapping state. It is desirable to have several dead-end states

to represent different types of errors that can happen in the system.

3.3. DRFSM representation

The same notation and terms of the ordinary FSMs will be used, but we will introduce some new

notation to represent recursive and variable transitions. First, there is a new type of transition, as shown
in Fig. 11; (from state B to A), this is called the Recursive Transition (RT). This figure shows an example
where state A might be the state where a probe is far from a feature, state B where it is near; state C an
error state; and state D the final state. d and t would be the distance from the current feature and the
time since the last event.

A recursive transition arrow from one state to another means that the transition from the first state to

the second state is done by a recursive call to the second state after changing the Variable Transition

D
Level V1 V2
1 12 30
2 6 15
3 3 7

Fig. 11. A simple DRFSM.
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Fig. 12. Flat representation of u simple DRFSM.

Vector, Second, the transition condition from a state to another may contain variable parameters
according to the current level, these variable parameters are distinguished from the constant parameters
by the notation V,. All variable parameters of all state transitions constitute the Variable Transition
Vector. It should be noticed that nondeterminism is not allowed, in the sense that it is impossible for two
concurrent transitions to occur from the same state. Fig. 12 is the equivalent FSM representation (or the
flat representation) of the DRFSM shown in Fig. 11, for three levels, and it illustrates the compactness
and efficiency of the new notation for this type of process.

3.4. A graphical interface for developing DRFSMs

A graphical interface was developed to allow quick and easy means for modifying the DRFSM which
drives the inspection process. This was accomplished by modifying an existing reactive behavior design
tool, GlJoe, to accommodate producing the code of DRFSM DEDS.

GlJoe was designed by Mark Bradakis at the University of Utah [6]. It allows the user to graphically
draw finite state machines, and output them as C code. The graphical user interface allows the user to
place states and transitions with a mouse. Transitions can be labelled with boolean combinations of
symbols, such as “A and B or C”. When the state machine is complete, the user selects a start state and
clicks a “Compile” button to output C code which duplicates the structure of the machine. The machine
can be saved and later modified for different applications.
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The code output by the original GlJoe has an iterative structure that is not conducive to the recursive
formulation of dynamic recursive finite state machines. Therefore, it was decided to modify GlJoe to suit
our needs. Maodifications to GlJoe include:
¢ Qutput of recursive rather than iterative code to allow recursive transitions.

« Modificaton of string parsing to accept recursive transition specification.

# Encoding of an event parser to prioritize incoming events from multiple sources.

¢ Implementation of variable transition vector (VTV) acquisition (when making recursive transitions.)
The VTV is currently read from a file.

Currently acceptable events are as follows:

# Probe - probe is the scene.

e« NoProbe - no probe is in the scene.

* ProbeClose — probe is within the “close™ tolerance to the current feature specified by the VTV.

® ProbeFar — probe is farther from the current feature than the “close” tolerance specified by the VTV.

e ProbeOnFeature — probe is on the feature (according to vision).

e ProbeNotOnFeature — probe is close, but not on the feature (according to the vision).

s VisionProblem - part string has changed, signifying that a feature is occluded (need to move the
camera).

e ProblemSolved - moving the camera has corrected the occlusion problem.

* TouchedFeature — probe has touched the feature (according to touch sensor,) feature is explored
quantitatively and exact featurc measurements are taken in this state.

¢ NoTouch - probe has not touched the feature (according Lo touch sensor).

* ClosedRegion - current feature contains closed region(s) to be inspected (recursively),

* OpenRegion — current feature contains open region(s) to be inspected (iteratively),

e TimeOut — machine has not changed state within a period of time specified by the VTV.

e Done — inspection of the current feature and its children is complete, return to previous level.

Additional events require the addition of suitable event handlers. New states and transitions may be

added completely within the GlJoe interface. The new code is outpul from Glloe and may be linked to

the inspection utilities with no modifications.

The following is a transcript showing the exploration of two closed regions A and B, with A containing
B:

inspect[5] /DEDS=Dbin/test_drfsm
enter the string: A(B())
ACB())

THE VARIABLE TRANSITION VECTOR

100.000000 50.000000
in state A

has the probe appeared? n % NoProbe is true
has the probe appeared? n
has the probe appeared? y % Probe is true

in state B

has the probe appeared? y

enter the distance from probe to A: 85 % Probe is Far
has the probe appeared? y

enter the distance from probe to A: 45 X Probe is Close
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in state C

enter the string: A(B())

enter the distance from probe to A: 10
is the probe on A? y

in state D

is the probe on A? ¥y

has touch occurred? y
in state E
Making recursive call..,

THE VARIABLE TRANSITION VECTOR

100.000000 50.000000
in state A
has the probe appeared? y
in state B
has the probe appeared? y
enter the distance from probe B: 95
has the probe appeared? y
enter the distance from probe to B: 45
in state C
enter the stirring: A(B())
enter the distance from probe to B: 10
is the probe on B? y
in state D
is the probe on B? y

has touch occurred? y
in state E

in state END
in state END

Inspection Complete.

inspectl6] /DEDS =

%X Probe on
% (Measure

%X Probe is

X Probe is

% Probe is

Z Probe on
% (Measure

Feature
Feature Parameters)

true

Far

Close

Feature
Feature Parameters)

163

The obtained results when linked with the rest of the experimental code were as expected. Future
modifications may include the addition of “output” on transitions, such as “TouchOccurred/Up-
dateModel”, allowing easy specification of communication between modules. It should be clear, however,
that the code generated by GlJoe is only a skeleton for the machine, and has to be filled by the users

according to the tasks assigned to each state.

In general, GlJoe proved to be a very efficient and handy tool for generating and modifying such
machines. By automating code generation, one can reconfigure the whole inspection process without
being familiar with the underlying code (given that all required user-defined events and modules are

available).
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Fig. 13. Inspection system overview.

4. Experiments

In conducting our experiments, we use a B/W CCD camera mounted on a Puma 560 robot arm, that
observe and guide the interaction between the CMM probe and the machined part (see Fig. 13.) In order
for the state machine to provide control, it must be aware of state changes in the system. As inspection
takes place, the camera supplies images that are interpreted by a set of 2-D and 3-D vision processing
algorithms and used to drive the DRFSM. These algorithms are described in greater detail in other
publications [29,23,26,28,25,27], but include thresholding, edge detection, region growing, stereo vision,
etc. The robot arm is used to position the camera in the workplace and move in the case of occlusion
problems.

An early experiment was run without using the robot to move the camera, and with a “hand-gener-
ated” automaton. Our latest experiment uses the robot and Glloe-generated automata.

The object of these experiments was to test the operation of the visual system with the state machine.
Two facets of this were the generation of an initial model from stereo vision and the generation of events
that describe a probe’s relationship to features in that model.

This stereo process used the Puma arm to gather pairs of images. The resulting model was used to
determine feature relationships used in the DEDS controller. The models shown are from this initial
visual inspection.

The event generation method, consisting of 2-D image processing routines, was used to detect the
relationship of a simulated (handheld) CMM probe to the features in the initial model. These events
were processed by the controller, which output text messages guiding the experimenter to move the
probe or indicate that a touch had occurred.The DRFSM generated by Glloe is shown in Fig. 14. This
machine has the following stales:
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Fig. 14. GlJoe window w/DRFSM.

A: The initial state, waiting for the probe to appear.

B: The probe appears, and waiting for it to be close. Here, “close” is a measure of the distance
between the probe and the current feature, since it depends on the level of the recursive structure.
For example, the distance at the first level, which represents the outer contours or features, is larger
than that of the lower levels. The closeness tolerance is taken from the VTV.

C: Probe is close, but not on feature.

D: The probe appears to be on feature in the image, and waiting for physical touch indicated from the
CMM machine,

Fig. 15. Experimental set-up.
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Fig. 16, Original and reverse-engineered part models.

e FE: Physical touch has happened (and the CMM measurements for the feature parameters are
recorded and saved for updating the CAD model). If the current feature represents a closed region,
the machine goes one level deeper to get the inner features by a recursive call to the initial state after
changing the variable transition parameters, If the current feature was an open region, then the
machine finds any other features in the same level.

e F: This state is to solve any vision problem happens during the experiment. For example, if the probe
is occluding one of the features, then the camera position can be changed to solve this problem.

Fig. 17. Original and reproduction.
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State A: NoProbe State B: ProbeFar State C: ProbeClose Statc D: ProbeOnFeature

Stute E: TouchedFeature State A: NaProbe State B: ProbeFur State C: ProbeClose

State D: PrubeOnFeature State B: Touchedlleature

Fig. 18. Bracke! sequence.

Fig. 19. Onginal and vision-reverse engineered models,
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Fig. 20. Original and vision-reverse engineered parts,

o ERROR: There is a time limit for each part of this experiment, specified in the VTV, If, for any
reason, one of the modules does not finish in time, the machine will go to this state, which will report
the error and terminate the experiment.

4.1, Experimental results, automated bracket inspection

A metal bracket was used in the experiment to test the inspeetion automaton. The piece was placed
on the inspection table within view of the camera (see Fig. 15).

The machine was brought on line and execution begun in State A, the start state. After initiating the
inspection process, the DRFSM transitioned through states until the probe reached the bracket
boundary. The state machine then called for the closed region to be recursively inspected until finally,
the hole was explored and the machine exited cleanly, The sequence is shown in Fig, 18,

The original part and the resulting reverse-engineered part are shown in Figs. 16 (wireframes) and 17
(rendered images). Notice that the two side holes and a portion of the bracket were not sensed correctly,
as a simple strategy was used to sense from only one direction. In the next experiment, a more
complicated model is sensed with a more sophisticated sensing and modelling strategy.

4.2. Experimental results, cover plate

A second experiment was run in a similar fashion, using a part similar to the fuel pump cover from a
Chevrolet engine. This piece offers interesting features and has a complex recursive structure which
allowed us 1o Lest the recursive nature of the state machine.

The sensing strategy used here was more robust than in the previous experiment. Detected feature
contours were sensed with stereo vision and used to build up a feature-based a _1 model. This model
was then used to semi-automatically machine a reproduction of the part. The original and reverse-en-
gineered wireframe models are shown in Fig. 19. A photograph of the original and reproduction is shown
in Fig. 20. For more detail on the sensing strategy, please see [29].

The inspection sequence corresponding to this experiment is shown in Fig. 21. Shown there, the
DRFSM transitions correctly through the inspection of the outside profile (depth of recursion = 0), a
hole (1), a profile pocket (1), a hole (2), and another hole (1).
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Stute A: NoProbe State B: ProbeFar Stute C: Probel'lose State D: ProbeOnFeature

Stnte BE: TouchedFeature State A; NaProbe State B: ProbeFar State C: ProbeClose

State D: ProbeOnFeature State E: TouchedFeature State A: NoProbe Stute B: ProbelFar

State C: 'robeClose State 1Y ProbeOnFeature State L; TouchedFeature Stnte A: NoProbe

State B: ProbeFar State C: ProbeClose Siate D: ProbeOnFeature State E: TouchedFeature

State A: NoProbe State B: 'robeliar State C: ProbeClose State D: ProbeOnFeature

State B: Tonched Feature

Fig. 21. Cover sequence.
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5. Conclusions

We have constructed a framework for autonomous inspection and reverse engineering which utilizes
discrete event dynamic system control. We used a dynamic recursive context for DEDS (DRFSM) that
was suited to the recursive nature of the problem area, parts composed of machined features.

Several experiments were performed to illustrate the utility of this framework, and we believe that
DRFSM provide robust control in the domain of autonomous sensing and inspection for machine parts.
An interactive package has been developed which allows a user to graphically generate DRFSM
automata.
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