Robotics Toolbox for MATLAB (Release 6)

Release 7, coming soon.... (expect April 2002)

- full support for modified (Craig's) D\&H conventions
- portable MEX file for dynamics, $1500 x$ faster than the M-file
- robotic blockset for Simulink
- lots of bug fixes and other improvements

Introduction

The Robotics Toolbox provides many functions that are useful in robotics such as kinematics, dynamics, and trajectory generation. The Toolbox is useful for simulation as well as analyzing results from experiments with real robots.

The Toolbox is based on a very general method of representing the kinematics and dynamics of serial-link manipulators and models are provided for well known robots such as the Puma 560 and the Stanford arm.

Advantages of the toolbox are that
the code is quite mature and provides a point of comparison for other implementations of the same algorithms, since source code is available there is a benefit for understanding and teaching.

The toolbox provides functions for manipulating datatypes such as vectors, homogeneous transformations and unitquaternions which are necessary to represent 3-dimensional position and orientation. It also has facilities to graphically display the pose of any robot, see figure, given just the Denavit and Hartenberg parameters. The robot is drawn as a series of line segments linking the origins of the link reference frames, as shown below for a Puma 560 robot in the zero angle pose.

Current version

The current version is RELEASE 6 (April 2001).

What's new

- Added a tool transform to a robot object.
- Added a joint coordinate offset feature, which means that the zero angle configuration of the robot can now be arbitrarily set. This offset is added to the user provided joint coordinates prior to any kinematic or dynamic operation, subtracted after inverse kinematics.
- Greatly improved the plot () function, adding 3D cylinders and markers to indicate joints, a shadow, ability to handle multiple views and multiple robots per figure. Graphical display options are now stored in the robot object.
- Fixed many bugs in the quaternion functions.
- The ctraj is now based on quaternion interpolation (implemented in trinterp()).
- The manual is now available in PDF form instead of PostScript.

Matlab version issues

This version exploits features of MATLAB 5 such as objects to represent robots, links and quaternions, and also uses 3D matrices to hold homogeneous transform trajectories. The toolbox will no longer work with Matlab v4 or Octave.

The fdyn() function uses the new @ function reference operator for Matlab 6.

How to get it

Download it from here in either gzip'd tar or ZIP format.
To install the Toolbox simply unpack the archive which will create a directory 'robot'. Adjust your MATLABPATH to include this directory. Check out the README and the documentation robot.ps which is in the MathWorks standard style and formatted for double sided printing (it's around 70 pages). Run the demo 'rtdemo' to see what it can do.

Contents

eul2tr	Euler angle to homogeneous transform
oa2tr	orientation and approach vector to homogeneous transform
rot2tr	extract the 3×3 rotational submatrix from a homogeneous transform
rotx	homogeneous transform for rotation

	about X -axis
roty	homogeneous transform for rotation about Y-axis
rotz	homogeneous transform for rotation about Z-axis
rpy2tr	Roll/pitch/yaw angles to homogeneous transform
tr2eul	homogeneous transform to Euler angles
tr2rot	homogeneous transform to rotation submatrix
tr2rpy	homogeneous transform to roll/pitch/yaw angles
transl	set or extract the translational component of a homogeneous transform
trnorm	normalize a homogeneous transformation
	Quaternions
/	divide a quaternion by quaternion or scalar
*	mutliply a quaternion by quaternion or vector
inv	invert a quaternion
norm	norm of a quaternion
plot	display a quaternion as a 3 D rotation
q2tr	quaternion to homogeneous transform
qnorm	normalize a quaternion
qinterp	interpolate quaternions
unit	unitize a quaternions

diff2tr	Kinematics transform
fkine	compute forward kinematics
ikine	compute inverse kinematics

ikine560	compute inverse kinematics for Puma 560 like arm
jacob0	compute Jacobian in base coordinate frame
jacobn	compute Jacobian in end-effector coordinate frame
tr2diff	homogeneous transform to differential motion vector
tr2jac	homogeneous transform to Jacobian
	compute forward dynamics
accel	compute Cartesian manipulator
inertia matrix	

	Graphics
drivebot	drive a graphical robot
plot	animate robot
Other	
manipblty	compute manipulability
rtdemo	toolbox demonstration
unit	unitize a vector

Related publications

P.I. Corke, "A Robotics Toolbox for MATLAB", IEEE Robotics and Automation Magazine, Volume 3 (1), March 1996, pp. 24-32.
P.I. Corke, A computer tool for simulation and analysis: the Robotics Toolbox for MATLAB, Proceedings of the 1995 National Conference of the Australian Robot Association, Melbourne, Australia, pp 319-330, July 1995.

The mailing list

A Mailing List is now available. To subscribe you just go to the main page and fill in your details.

Rights to use, citation etc.

Many people are using the Toolbox for teaching and this is something that I would encourage. If you plan to duplicate the documentation for class use then every copy must include the front page of the original manual provided in PostScript format with the release.

If you want to cite the Toolbox please use

```
@ARTICLE{Corkeqbbっ
    AUTHOR = {P.I. Corke},
    JOURNAL = {IEEE Robotics and Automation Magazine},
    MONTH = mar,
    NUMBER ={1},
    PAGES = {24-32},
    TITLE = {A Robotics Toolbox for {MATLAB}},
    VOLUME ={{3},
    YEAR = {1११ロ}
}
```


Other public domain tools for robot kinematics and dynamics on the Web

- SPACELIB: 3D kinematics and dynamics, C-language and MATLAB. (Legnani, U. di Brescia)
- Robotica for Mathematica (Spong, U. Ilinois)
- $\mathrm{C}++$ classes for robot kinematics and dynamics
- Dynamechs a C++ library for simulating the dynamics of multibody systems
- Robot Symbolic Dynamics package for MAPLE (Corke, CSIRO)
- MATROBCOM a toolbox for interfacing Matlab to real robots (Pires, U.Coimbra)
- Kevin Dowling's FAQ has links to many other software tools.

Update and bug fixes to the current version

None as yet.

Contact

I can be reached by email at peter.corke@csiro.au.

Page by Peter Corke. Last Modified: April 2001

