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Abstract

Prototyping is an important activity in engineering. Prototype development is a good test for
checking the viability of a proposed system. Prototypes can also help in determining system param-
eters, ranges, or in designing better systems. The interaction between several modules (e.g., S/W,
VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment
that includes radically different types of information, combined in a coordinated way. Developing
an environment that enables optimal and flexible design of robot manipulators using reconfigurable
links, joints, actuators, and sensors is an essential step for efficient robot design and prototyping.
Such an environment should have the right “mix” of software and hardware components for de-
signing the physical parts and the controllers, and for the algorithmic control of the robot modules
(kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital computer
control). Specifying object-based communications and catalog mechanisms between the software
modules, controllers, physical parts, CAD designs, and actuator and sensor components is a nec-
essary step in the prototyping activities. We propose a flexible prototyping environment for robot
manipulators with the required subsystems and interfaces between the different components of this
environmernt.
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1 Introduction

In designing and building a robot manipulator, many tasks are required, starting with spec-
ifying the tasks and performance requirements, determining the robot configuration and
parameters that are most suitable for the required tasks, ordering the parts and assem-
bling the robot, developing the necessary software and hardware components (controller,
simulator, monitor), and finally, testing the robot and measuring its performance.

Our goal is to build a framework for optimal and flexible design of robot manipulators
with software and hardware systems and modules which are independent of the design
parameters and which can be used for different configurations and.varying parameters.
This environment is composed of several subsystems. Some of these subsystems are:

e Design.

e Simulation.

e Control.

e Monitoring,.

e Hardware selection.

e CAD/CAM modeling.
e Part Ordering.

e Physical assembly and testing.

Each subsystem has its own structure, data representation, and reasoning strategy. On
the other hand, much of the information is shared among these subsystems. To maintain
the consistency of the whole system, an interface layer is proposed to facilitate the com-
munication between these subsystems, and set the protocols that enable the interaction
between the subsystems to take place.

This project involved the interaction and cooperation of several different research groups.
The robotics group (Prof. Thomas Henderson, Prof. Tarek Sobh, Prof. Sam Drake and
myself), was involved in the design and analysis of the prototype robot, and also the im-
plementation of the necessary software systems for the prototyping environment and for
controlling and simulating the three-link robot. The Alpha_l group, represented by Mircea
Cormos was involved in designing the CAD/CAM model for the robot using the Alpha.1
CAGD system. The VLSI group, represented by Prof. Kent Smith and Anil Sabbavarapu,
helped in the analysis stage, particularly, in making the decision of using hardware vs. soft-
ware solutions. Also this group was involved in the design of the communication circuitry
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Figure 1: The interaction between the groups involved in the prototyping activity.

between the robot and the workstation. The Center of Software Science (CSS), represented
by Prof. Robert Mecklenburg, helped in the design and analysis of the prototyping envi-
ronment with the required communication protocols and database analysis. The Center of
Engineering Design (CED), represented by Prof. Sanford Meek, was involved in selecting
the electrical and electronic components and helping out in the overall design and testing
procedures for the robot manipulator. Finally, the manufacturing group at the Advanced
Manufacturing Lab (AML), represented by Mircea Cormos, the AML manager, Prof. Sam
Drake, and Prof. Sanford Meek, was involved in the manufacturing and assembly of the
robot. Besides these groups, there was cooperation between the departments of Computer
Science and Mechanical Engineering in selecting the required components for the robot.
A cataloging system has been recently developed by Prof. Don Brown and Prof. Robert
Mecklenburg that automates the selection process for some of the parts, and we would like
to incorporate this system with the part-ordering subsystem in the prototyping environ-
ment. Figure 1 shows the interaction between these groups during this project.

1.1 Objectives

The objective of this research project is to explore the basis for a consistent software and
hardware environment, and a flexible framework that enables easy and fast modifications,



and optimal design of robot manipulator parameters, with online control, monitoring, and
simulation for the chosen manipulator parameters. This environment should provide a
mechanism to define design objects that describe aspects of design, and the relations be-
tween those objects.

Another goal is to build a prototype three-link robot manipulator. This will help de-
termine the required subsystems and interfaces to build the prototyping environment, and
will give us hands-on experience for the real problems and difficulties that we would like to
address and solve using this environment.

The importance of this project arises from several points:

e This framework will facilitate and speed the design process of robots.

e The prototype robot will be used as an educational tool in the robotics and automatic
control classes.

e This project will facilitate the cooperation of several research groups in the depart-
ment (VLSI group, Robotics group), and the cooperation of the department with
other departments (Mechanical and Electrical Engineering).

e This project will establish a basis and framework for design automation of robot
manipulators.

A brief background of robot design and modules is presented in Section 2 with the
related work in this area. A review about the current research efforts in building spe-
cial hardware architectures for robotic applications is represented in Section 3. A detailed
description of prototyping and simulating a three-link robot manipulator is presented in
Section 4. The communication between the robot and the workstation is discussed in detail
in Section 5. The optimal design for robot manipulators is discussed, and the proposed
optimal design system is described and investigated in Section 6. Section 7 describes the
prototyping environment components such as the interface between the systems and the
required representations to implement this interface (e.g., knowledge base, object oriented
scheme, rule-based reasoning, etc.). Section 8 shows some examples and results of the
implemented systems. In Section 9, conclusions from the work are presented along with
possible future extensions. The dynamics equations for the three-link robot, before and
after simplifications, are described in Appendix a and Appendix B. The assembly pro-
gram used in the communication between the robot and the workstation is described in
Appendix C.



2 Background and Related Work

2.1 Phases of Building a Robot

The process of building a robot can be divided into several phases as follows:
1. Design Phase: which includes the following tasks:

e Specify the required robot tasks.
e Choose the robot parameters.
e Set the control equation and the trajectory planning strategy.

e Study the singular points.

2. Simulation Phase: test the behavior and the performance of the chosen manipula-
tor.

3. Prototyping and Testing Phase: test the behavior and performance, and compare
it with the simulated results.

4. Manufacturing Phase: order the required parts and manufacture the actual robot.

2.2 Robot Modules and Parameters

Controlling and simulating a robot is a process that involves a large number of mathemat-
ical equations. To be able to deal with the required amount of computation, it is better
to divide them into modules, in which each module accomplishes a certain task. The most
important modules, as described in [7], are kinematics, inverse kinematics, dynamics, tra-
jectory generation, and linear feedback control. In the following sections, we will briefly
describe each of these modules, and the parameters involved in each.

2.2.1 Forward Kinematics

This module is used to describe the static position and orientation of the manipulator link-
ages. There are two different ways to express the position of any link: using the Cartesian
space, which consists of position (z,y, z), and orientation, which can be represented by a
3 X3 matrix called the rotation matrix; or using the joint space, by representing the position
by the angles of the manipulator’s links. Forward kinematics is the transformation from
joint space to Cartesian space.

This transformation depends on the configuration of the robot (i.e., link lengths, joint
positions, type of each joint, etc.). In order to describe the location of each link relative
to its neighbor, a frame is attached to each link, then we specify a set of parameters that
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characterizes this frame. This representation is called Denavit-Hartenberg notation. See [7]
for more details.

One approach to the problem of kinematics analysis is described in [45], which is suitable
for problems where there are one or more points of interest on every link. This method
also generates a systematic presentation of all equations required for position, velocity, and
acceleration, as well as angular velocity and angular acceleration for each link.

2.2.2 Inverse Kinematics

This module solves for the joint angles given the desired position and orientation in Carte-
sian space. This is a more complex problem than forward kinematics. The complexity
of this problem arises from the nature of the transformation equations, which are nonlin-
ear. There are two issues in solving these equations: ezistence of solutions and multiple
solutions. A solution can exist only if the given position and orientation lies within the
workspace of the manipulator’s end-effector. By workspace, we mean all points in space
that can be reached by the manipulator’s end-effector. On the other hand, the problem
of multiple solutions forces the designer to set a criterion for choosing one solution, e.g., a
good choice is the solution that minimizes the amount that each joint is required to move.

There are two methods for solving the inverse kinematics problem: closed form solutions
and numerical solutions. Numerical solutions are much slower than closed form solutions,
but, for some configurations it is too difficult to find a closed form solution. In our case,
we will use closed form solutions, since our models are three link manipulators with easy
closed form formulas.

A software package called SRAST (Symbolic Robot Arm Solution Tool) that symbol-
ically solves the forward and inverse kinematics for n-degree of freedom manipulators has
been developed by Herrera-Bendezu, Mu, and Cain [18]. The input to this package is the
Denavit-Hartenberg parameters, and the output is the direct and inverse kinematics solu-
tions. Another method of finding symbolic solutions for the inverse kinematics problem
was proposed in [47]. Kelmar and Khosla proposed a method for automatic generation of
forward and inverse kinematics for a reconfigurable manipulator system [23].

2.2.3 Dynamics

Dynamics is the study of the torques required at each joint to cause the manipulator to -
move in a certain manner. It is also concerned with the way in which a manipulator moves
when certain torques are applied to its joints. The serial chain nature of manipulators
makes it easy to use simple methods in dynamic analysis.

There are two problems related to the dynamics of a manipulator: controlling the
manipulator, and simulating the motion of the manipulator. In the first problem, we have
a set of required positions for each link, and we want to calculate the required torques to

10



be applied at each joint. This is called inverse dynamics. In the second problem, we are
given a set of torques applied to each link, and we wish to calculate the new position and
the velocities during the motion of each link. The latter is used to simulate a mathematical
manipulator model before building the physical model, which makes it possible to update
and modify the design without the cost of changing or replacing any physical parts.

The dynamics equations for any manipulator depend on the following parameters:

¢ The mass of each link.

The mass distribution for each link, which is called the inertia tensor, which can be
thought of as a generalization of the scalar moment of inertia of an object.

Length of each link.

Joint type (revolute or prismatic).

Manipulator configuration and joint locations.

The dynamics model we are using to control the manipulator is in the form:
T = M(0)0 + V(0,0) + G(9) + F(6,6)

To simulate the motion of a manipulator we must use the same model we have used in
controlling that manipulator. The model for simulation will be in the form:

b=M1(0)r — V(0,0)— G(8) — F(B,0)]

The dynamics module is the most time consuming part among the manipulator’s mod-
ules. That is because of the tremendous amount of calculation involved in the dynamics
equations. This fact makes the dynamics module a good candidate for hardware imple-
mentation, to enhance the performance of the control and/or the simulation system.

There are some parallel algorithms to calculate the dynamics of a manipulator. One
approach described in [37], is to use multiple microprocessor systems, where each one is
assigned to a manipulator link. Using a method called branch-and-bound, a schedule of the
subtasks of calculating the input torque for each link is obtained. The problem with this
method is that the scheduling algorithm itself was the bottleneck, thus limiting the total
performance. Several other approaches have been suggested [29, 30, 44] based on a multi-
processor controller, and pipelined architectures to speed the calculations. Hashimoto and
Kimura [17] proposed a new algorithm called the resolved Newton-Euler algorithm based
on a new description of the Newton-Euler formulation for manipulator dynamics. Another
approach was proposed by Li, Hemami, and Sankar [34] to drive linearized dynamic models
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about a nominal trajectory for the manipulator using a straightforward Lagrangian formu-
lation. An efficient structure for real-time computation of the manipulators dynamics was
proposed by Izaguirre, Hashimoto, Paul and Hayward [20]. The fundamental character-
istic of this structure is the division of the computation into a high-priority synchronous
task and low-priority background tasks, possibly sharing the resources of a conventional
computing unit based on commercial microprocessors.

2.2.4 Trajectory Generation

This module computes a multidimensional trajectory which describes the manipulator’s
position, velocity, and acceleration for each link. This module includes the human interface
problem of describing the desired behavior of the manipulator. The complexity of this
problem arises from the wide meaning of manipulator’s behavior. In some applications we
might need to specify only the goal position, whereas in some other applications, we might
need to specify the velocity with which the end effector should move. Since trajectory
generation occurs at run time on a digital computer, the trajectory points are calculated at
a certain rate, called the path update rate. We return to this issue when we consider speed.

There are several strategies to calculate trajectory points which generate a smooth
motion for the manipulator. It is important to guarantee this smoothness of the motion
due to physical considerations such as the required torque that causes this motion, the
friction at the joints, and the frequency of update required to minimize the sampling error.

One of the simplest methods is cubic polynomials, which assumes a cubic function for
the angle of each link, by differentiating this equation the velocity and acceleration are
computed (see [7]).

2.3 Linear Feedback Control

We will use a linear control system in our design, which is an approximation of the nonlinear
nature of the dynamics equations of the system, which are more properly represented by
nonlinear differential equations. This is a reasonable approximation, and it is used in
current industrial practice.

We will assume that there are sensors at each joint to measure the joint angle and
velocity, and there is an actuator at each joint to apply a torque on the neighboring link.
Our goal is to cause the manipulator joints to follow a desired trajectory. The readings
from the sensors will constitute the feedback of the control system. By choosing appropriate
gains we can control the behavior of the output function representing the actual trajectory
generated. Minimizing the error between the desired and actual trajectories is our main
concern. Figure 2 shows a high level block diagram of a robot control system.
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When we talk about control systems, we should consider several issues related to that
field, such as: stability, controllability, and observability. For any control system to be
stable, its poles should be negative, since the output equation contains terms of the form
k;ePi; if p; is positive, the system is said to be unstable. We can guarantee the stability of
the system by choosing certain values for the feedback gains.

We will assume a second order control system of the form:

mé + bé + k6.

Another desired property of the control system is that it be critically damped, which
means that the output will reach the desired position in minimum time without overshoot-
ing. This can be accomplished by making > = 4mk. Figure 3 shows the three types of
damping: underdamped, critically damped, and overdamped.

Figure 4 shows a block diagram for the controller, and the role of each of the robot
modules in the system.

More about robot control can be found in [3, 33, 46].

2.3.1 Local PD Feedback Control

Most of the feedback algorithms used in the current control system are digital implemen-
tation of a proportional plus derivative (PD) control. In industrial robots, a local PD
feedback control law is applied at each joint independently. The advantages of using a PD
controller are the following:

Very simple to implement.

Does not require the identification of robot parameters.

Suitable for real-time control since it has very few computations compared to the
complicated nonlinear dynamic equations.

The behavior of the system can be controlled by changing the feedback gains.

Byt

0 e

Trajectory Ou(t) . Control _T> Manipulator N

Generator 4t) System ’ 9
———r S

T

Figure 2: High-level block diagram of a robot control system.
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Figure 4: Block diagram of the controller of a robot manipulator.
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On the other hand, there are some disadvantages of using a PD controller instead of
the dynamic equations such as:

e High update rate is required to achieve reasonable accuracy.
e Dynamic equations should be used to simulate the robot manipulator behavior
e There is always trade-off between static accuracy and the overall system stability.

e Using local PD feedback law at each joint independently does not consider the cou-
plings of dynamics between robot links.

Some ideas have been suggested to enhance the usability of the local PD feedback
law for trajectory tracking. One idea is to add a lag-lead compensator using frequency
response analysis [5]. Another method is to build an inner loop stabilizing controller using
a multivariable PD controller, and an outer loop tracking controller using a multivariable
PID (proportional, integral, and derivative) controller [53].

In general, using a local PD feedback controller with high update rates can give an
acceptable accuracy for trajectory tracking applications. It was proved that using a linear
PD feedback law is useful for positioning and trajectory tracking [21].

2.3.2 Continuous vs. Discrete Time Control

In computer-controlled systems, the calculated actuator forces are not continuous functions
in time any more. This is because of the time needed by the computer to perform the
required calculations. In this case, we can study the system using digital control theory
which takes the calculation time into account when analyzing the system. To be able to
use the continuous model, we must use high update rates (i.e., reduce the computation
time). This can be achieved by using a faster computer, and/or using parallel architectures
and using some parallel algorithm to calculate the complicated parts in the computations
(usually the dynamics of the system). The effect of choosing the update rate on the system
performance and stability is discussed in Section 2.4.

Another method is to use a mixture of continuous and discrete control for the system.
This can be done by using the computer to generate the required trajectory and the torques
for the actuators in discrete time, and an analog PID controller in the interval between
the computer samples. This will enable us to assume a continuous control law and will
minimize the error during the computation time.

2.3.3 Disturbance Rejection

In any real-time control system, there is always some amount of external noise fy;(t), and
usually this noise is stochastic in nature. The distribution and magnitude of this noise
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depends on the working environment, and sometimes it is too difficult to prevent the noise
from happening, but we can modify the control model to reduce the effect of such noise
to an acceptable degree. This noise can be modeled using statistical measures and some
assumptions about its nature. To deal with this noise we must assume that it is bounded,
that is, there is a constant a such that:

max; faise(t) < a

This maintains the property of a stable linear system known as bounded-input bounded-
output (BIBO) stability.

As a simple case, assume that fy,, is a constant. In this case, the steady state error can
be calculated by analyzing the system at rest (i.e., set all derivatives to zero) as follows:

kpe = faist
or

€= fdist/kp

The value of e here represents the steady state error of the system. From the last
equation, it is clear the increasing kp will decrease the steady state error. On the other
hand, there is a limit on the value of k, to maintain the stability of the system.

Another way to reduce (and sometimes eliminate) the steady state error, is by adding
an integral term to the control low. That is what is known as the (PID) Proportional,
Integral, Derivative controller. By adding this term, the steady state error can be calculated

as follows:
kye + k; [edt = fu;st
or
kpé + kie = faist
We assumed, however, that fy;, is a constant, thus, fd,'st = 0, which gives:

k,‘6:0

So, the addition of this integral element can eliminate constant disturbances.

2.4 Speed Considerations

There are several factors that affect the desired speed (frequency of calculations), the
maximum speed we can attain using software solutions, and the required hardware we
need to build if we are to use a hardware solution. The desired frequency of calculation
depends on the type and frequency of input, the noise in the system, and the required
output accuracy.
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2.4.1 Types of Inputs

The user interface to the system should allow the user to specify the desired motion of
the manipulator in different ways depending on the nature of the job the manipulator is
designed to do. The following are some of the possible input types the user can use:

e Move from point zg, Yo, 2o to point x4,yq, z4 in Cartesian space.

e Move in a predefined position trajectory [z;, ¥, z;]. This is called position plahning.
e Move in a predefined velocity trajectory [z;, ¥, 2]. This is called velocity planning.
e Move in a predefined acceleration trajectory [&;, s, Z;]. This is called force control.

The input type will affect the placement of the inverse kinematics module: outside the
update loop, as in the first case, or inside the update loop, as in the last three cases. For
the last three cases we have two possible solutions; we can include the inverse kinematics
module in the main update loop as we mentioned before, or we can plan ahead in the joint
space before we start the update loop. We should calculate the time required for each case
plus the time required to make a decision.

2.4.2 Desired Frequency of the Control System

We must decide on the required frequency of the system. In this system we have four
frequencies to be considered:

e Input frequency, which represents the frequency of changes to the manipulator status
(position, velocity, and acceleration).

e Update frequency, representing the speed of calculations involved.

e Sensing frequency, which depends on the A/D converters that feed the control system
with the actual positions and velocities of the manipulator links.

e Noise frequency: since we are dealing with a real-time control system, we must con-
sider different types of noise affecting the system such as: input noise, system noise,
and output noise (from the sensors).

2.4.3 Error Analysis

The error is the difference between the desired and actual behavior of the manipulator. In
any physical real-time control system, there is always a certain amount of error resulting
from modeling error or different types of noise. One of the design parameters is the maxi-
mum allowable error. This depends on the nature of the tasks the manipulator is designed
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to accomplish. For example, in the medical field the amount of error allowed is much less
than in a simple laboratory manipulator. The update frequency is the most dominant
factor in minimizing the error. It is clear that increasing the update frequency results in
decreasing the error. The update frequency, however, is limited by the speed of the ma-
chine used to run the system. Khosla performed some experiments to study the effect of
changing the control sampling rate on the performance of the manipulator behavior [25]
and showed that increasing the update rate decreases the error.

2.5 Optimal Design of Robot Manipulators

It is important to choose the parameters of a robot manipulator (configuration, dimension,
motors, etc.) that are most suitable for the required robot tasks. Considerable research has
been done in this area. Depkovich and Stoughton [11] proposed a general approach for the
specification, design and validation of manipulators. The concept of Reconfigurable Mod-
ular Manipulator System (RMMS) was proposed by Khosla, Kanade, Hoflman, Schmitz,
and Delouis [24] at Carnegie Mellon University. There goal is to create a complete manip-
ulator system, including mechanical and control hardware, and control algorithms that are
automatically and easily reconfigured.

Designing an optimal manipulator is not yet well defined, and it depends on the defi-
nition and criterion of optimality. There are several techniques and methodologies to for-
malize this optimization problem by creating some objective functions that satisfy certain
criteria, and solving these functions with the existence of some constraints.

One criterion that is used is a kinematic criterion for the design evaluation of manipu-
lators by establishing quantitative kinematic distinction among a set of designs [6, 40, 41].
Another criterion is to achieve optimal dynamic performance; that is to select the link
lengths and actuator sizes for minimum time motions along specified trajectory [38, 49].

TOCARD (Total Computer-Aided Design System of Robot Manipulators) is a system
designed by Takano, Masaki, and Sasaki [52] to design both fundamental structure (degrees
of freedom, arm length, etc.), and inner structure (arm size, motor allocation, motor power,
etc). They describe the problem as follows: there is a set of design parameters, a set of
objective functions, and a set of Gavin data (constraints). The design parameters are:

o Degrees of freedom.

Joint type and its sequence.

Arm length and offset.
e Arm cross-sectional dimensions.

Motor allocations.

18



e Joint mechanisms and transmission mechanisms.
e Reduction gears.

e Motors.
The objective functions for the design of robot arm are as follows:

e Manipulability.

e Total motor power consumption.

e Arm weight.

e Total weight of robot.

o Cost.

o Workspace.

e Joint displacement limit.

e Maximum joint velocity and acceleration.
e Deflection.

e Natural frequency.

e Position accuracy.
The constraints can be:

e Workpiece and degrees of freedom of orientation.
e Maximum velocity and acceleration of workpiece.

e Position accuracy.

Weight, gravity center and moment of inertia of workpiece.

e Dimensional data of hand and grasping manner of workpiece.

Hollerbach proposed an optimum kinematic design for a seven-degree of freedom ma-
nipulator [19].
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2.6 Integration of Heterogeneous Systems

To integrate the work among different teams and sites working in such a large project, there
must be some kind of synchronization to facilitate the communication and cooperation
between them. A concurrent engineering infrastructure that encompasses multiple sites
and subsystems, called Pallo Alto Collaborative Testbed (PACT), was proposed in [8].
The issues discussed in that work were:

e Cooperative development of interfaces, protocols, and architecture.
e Sharing of knowledge among heterogeneous systems.

e Computer-aided support for negotiation and decision-making.

An execution environment for heterogeneous systems called “InterBase” was proposed
in [4]. Tt integrates preexisting systems over a distributed, autonomous, and heterogeneous
environment via a tool-based interface. In this environment each system is associated with
a Remote System Interface (RSI) that enables the transition from the local heterogeneity
of each system to a uniform system-level interface.

Object orientation and its applications to integrate heterogeneous, autonomous, and
distributed systems are discussed in [43]. The argument in this work is that object-oriented
distributed computing is a natural step forward from the client-server systems of today.
A least-common-denominator approach to object-orientation as a key strategy for flexibly
coordinating and integrating networked information processing resources is also discussed.
An automated, flexible and intelligent manufacturing based on object-oriented design and
analysis techniques is discussed in [39], and a system for design, process planning and
inspection is presented.

Several important themes in concurrent software engineering are examined in [12]. Some
of these themes are:

Tools: Specific tools that support concurrent software engineering.

Concepts: Tool-independent concepts are required to support concurrent software engi-
neering.

Life cycle: Increase the concurrency of the various phases in the software life cycle.

Integration: Combining concepts and tools to form an integrated software engineering
task.

Sharing: Defining multiple levels of sharing is necessary.
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A management system for the generation and control of documentation flow throughout
a whole manufacturing process is presented in [13]. The method of quality assurance is
used to develop this system that covers cooperative work between different departments
for documentation manipulation.

A computer-based architecture program called the Distributed and Integrated Envi-
ronment for Computer-Aided Engineering (Dice), which addresses the coordination and
communication problems in engineering, was developed at the MIT Intelligent Engineering
Systems Laboratory [51]. The Dice project addresses several research issues such as, frame-
works, representation, organization, design methods, visualization techniques, interfaces,
and communication protocols.

Some important topics in software engineering, such as the lifetime of a software sys-
tem, analysis and design, module interfaces and implementation, and system testing and
verification, can be found in [28]. Also, a report about integrated tools for product, and
process design can be found in [55].

In the environment we are proposing, several subsystems are communicating through a
central interface layer (CI), and each subsystem has a subsystem interface (SSI) responsible
for data transformation between the subsystem and the CI. The flexibility of this design
arises from the following points:

e Adding new subsystem can be achieved by writing an SSI for this new subsystem,
adding it to the list of the subsystems in the CI. There are no changes required to
the other SSIs.

e Removing a subsystem only requires removing its name from the subsystems list in

the CI.

e Any changes in one of the subsystems require changing the corresponding SSI to
maintain correct data transformation to and from this subsystem.

More about this design is discussed in Section 7.

3 Special Computer Architecture for Robotics

When we design real-time systems that involves a huge number of floating point calcu-
lations, the speed becomes an important issue. In such situations, a hardware solution
might be used to achieve the desired speed. In the following sections we will investigate
the different solutions and platforms proposed for robotics.
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3.1 Design Issues

VLSI design for robot application is a complex task which requires a conceptual framework
that control its complexity. Several decisions should be taken during the design process
such as: What is the best architecture for this application, how specific the hardware
implementation should be, what kind of tools needed to implement such design, and the
cost of the design.

To be able to take such decisions, the computational needs for the applications should
be analyzed and the performance requirements of the robot has to be considered.

For a generic robot system there are three major layers of computation proposed in [31]:

e Management layer which includes:

— user interface

operating system support

resource allocation

— coordination
e Reasoning layer which includes:

— decision making

— causal reasoning

— temporal reasoning
— geometric reasoning
— planning

— world modeling
e Device interaction layer includes:

— adaptive control

— kinematics and dynamics
— multi-sensor fusion

— interpretation

— feature extraction

— preprocessing

One of the most important tools the has been developed recently is the hardware de-
scription languages (DHL) which enables top-down design using high-level descriptions.
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3.2 Parallel Architectures and multiprocessors

There are many forms of parallelism and concurrency which can be applied to advanced
computational problems in robot control and simulation. This fact leads to the develop-
ments of many parallel architectures that utilizes this property.

A real-time robot control based on multi-processor architecture was proposed in [1]. in
this design the control tasks are analyzed to obtain a lower bound on the number of math-
ematical operations required to generate the control signal, then a parallel computation
structure is designed according to the maximum sample time based on the stability of the
control system. This design can be implemented as a custom VLSI or as a systolic array
based system.

An optimal design for multiple-APU (Arithmetic Processing Unit) based robot con-
trollers is discussed in [2]. In this paper it was shown that using eight APUs, it is possible
to compute the inverse kinematics, inverse dynamics and the trajectory for the PUMA arm
in less than 3ms using 16.7 MHZ 68881.

A dataflow multiprocessor system for robot arm control was proposed in [15]. In this
method, the maximum parallelism would require 1834 processing elements. However, a
reasonable engineering solution requires 42 processing elements.

SIERA (System for Implementing and Evaluating Robotic Algorithms) is a multipro-
cessor system that has been developed at the Laboratory for Engineering Man/Machine
Systems (LEMS) at Brown University. It incorporates a tightly coupled bus-based system
(the Real-time Servo System) and a loosely coupled point-to-point network (the Armstrong
Multiprocessor System). Figure 5 shows an overview of the SIERA system and Figure 6
shows the Armstrong processes. More details can be found in [22].

A parallel computer architecture for real-time control application in grasping and ma-
nipulation was proposed in [26]. In this paper a new scheduling algorithm for multiprocessor
architecture based on either complete or incomplete crossbar interconnection networks is
presented. The mean feature of the proposed algorithm is that it takes into account the
communication delays between processors and minimizes both the execution time and the
communication cost.

Several parallel architectures are proposed in [35, 36, 44, 48, 56]

3.3 Application-Specific Integrated Circuits

The increasing demand for more computation power to meet the current speed require-
ments of robot controllers made it clear that general purpose processors are no longer
satisfactory. The recent ASIC (Application-Specific Integrated Circuits technology was the
solution that created better opportunities for implementing real-time controller for more
sophisticated robot manipulators. An overview of ASIC technology for robotics was pre-
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