Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 1991

Performance Evaluation via Perturbation
Analysis

Tarek M. Sobh

University of Pennsylvania

This paper is posted at ScholarlyCommons.
http://repository.upenn.edu/cis_reports/366

; Performance Evaluation via Perturbation Analysis

MS-CIS-91-38
GRASP LAB 263

Tarek M. Sobh

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

May 1991

Performance Evaluation via Perturbation Analysis
Tarek M. Sobh

GRASP Laboratory
Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104

Abstract

In this paper we present an overview for the development of a theory for analyzing
and predicting the behaviour of discrete event dynamic systems (DEDS). DEDS are
dynamic systems in which state transitions are caused by internal, discrete events in
the system. DEDS are attracting considerable interests, current applications are found
in manufacturing systems, communications and air traffic systems, future applications
will include robotics, computer vision and artificial intelligence. We will discuss the

perturbation analysis technique (PA) for evaluating the performance of DEDS.

Keywords : Communication Networks, Control Theory, Dynamic Systems, Discrete Event

Systems, Perturbation Analysis, Performance Evaluation, Queueing Networks.

1 Introduction

In this paper, we describe a recently developed framework for analyzing and evaluating the

performance of discrete event dynamic systems (DEDS) called perturbation analysis (PA)

[1,2,8]. The approach used in this framework is a quantitative approach that focuses on the
performance measures of DEDS. There are other state space approaches that concentrate
on the qualitative aspects of DEDS [6,7,9,10], however, we shall concern ourselves only with

the PA technique as it is more suitable for analyzing communication networks.

Discrete event dynamic systems (DEDS) are dynamic systems (typically asynchronous) in
which state transitions are triggered by the occurrence of discrete events in the system. Many
existing dynamic system have a DEDS structure, manufacturing systems and communication
systems are just two of them. The PA approach to analyzing DEDS is different from the
analysis techniques for the state space approach, the existence of a consistent and pre-
defined automata-like model of the system under consideration is not necessary to perform
PA. For example, if we consider a serial production line with M stations with a queue space
of size K; for each station. Then the total number of states for such a system would be
(MM, (K; + 1))(2M), which can amount to billions for relatively small values of K; and M.
It is quite clear that modeling such systems as finite state machines is inefficient, if not
impossible. It should also be mentioned that the finite state machines approach is more

suitable for answering qualitative rather than quantitative questions.

Perturbation analysis (PA) is a technique that calculates the sensitivity of performance
measures of DEDS with respect to system parameters by analyzing its sample path. The
object of PA is to obtain the perturbed performance from a nominal experiment or sample
path without doing a perturbed experiment. To avoid doing more than one experiment or

simulate a perturbed experiment is the goal of PA.

2 Infinitesimal Perturbation Analysis (IPA)

To present the idea behind IPA, we shall first introduce a simple system (see Figure 1). It
consists of a buffer, call it A, where messages arrive and are placed in a FIFO queue, and is
connected via a link to another buffer, call it B, where the messages are received.
Consider the following definitions:
§ = link service time (s/bit)

H = header length (bits)

L; = length of message i (bits)

Buffer at Buffer at
Arriving
- o N
Mecssages >
Source Node ' Destination Node
A B

Fig. 1. Link in a communication network.

We define the “service time” to be the time it takes to transmit a message ¢ from A to

B assuming the message does not wait in the queue before it gets sent. We denote this by

X; = (H+ L)

(1)
= v+ L0 '

Let us also define the “system time”, t;, to be the time since a message ¢ arrives at A till

it is completely received by B. Finally let us call our performance measure T'(0,+). This can

be approximated by using the mean system time, T(O,v, N), where

(0,4, N) = (%) éti. @)

Note that as N — oo, T(0, 7, N) converges to T'(0,7).

For sensitivity estimates, we use dT'/d0 and dT'/dy. A good estimate for dT'/d0 is

I =[T(0+ A0,~,N) —T(0,~, N)]/Ao. (3)
Similarly a good estimate for dT'/d~y is

G = [F(0,7+ Ay, N) = T(0,7,N)}/Ay. (4)

As can be seen, to obtain the estimates above one necds one more experiment at 0 + A0

and another aty + A~y.
The problem here is to choose a value for A@ (and similarly Ay). For, if we choose to

large a value we will not get a good estimate of the gradient. On the other hand, if we

3

choose A to be too small, we may amplify the noise interference present in T(O,'y + Ay, N)
and T(9,v, N). In this paper, however, we will not concern ourselves with this experimental

problem.

2.1 An Unperturbed Experiment

Figure 2 displays the time evolution for a sequence of messages, that arrive and depart the
buffer of A, within a certain period of time. Where A; is the time between the arrival of
M;_; and M; (with the exception that A; is from the start of the experiment). We define a

busy period (BP) to be the time when the system is busy processing messagcs.

M MM, M, M M,
) <o : . . !
4——A,—>:<—A1-»;A,.< A; Ay > aA b

\ N
v

No. of messages at Source Node

) : : - :
————— X -——-——-»:4-7(,—»:4—— X; —>a-X

1> Time —p

R
M M MJM

Fig. 2. Timc evolution of the cxperiment 4

In our example, we start off with the buffer empty, and have to wait a time of length A,
for the first message to arrive, and another X; for the message to be completely transmitted
(hence total time is A3 + X;). However, during this time M,, followed by Mj arrive at the
queue and have to wait for M; to get fully transmitted. In the case of M, the arrival time is
Ay + A; and the departure time is A; + X; + X,. More generally, M; has an arrival time
of to + Z’;—_-z A; and a departure time of to + ¥i_; X, where {o = A;. Hence we can define

the system time to be

(to+ X)) = (to+ 1 A) = X, = 2 A ©)

where the sum is zero for the case when ; = 1. Note that this sum only holds up until the time
of the complete departure of the fourth message (i.e. after the first busy period). Therefore,
we can rewrite the system time (as would apply to our specific example) in the following

way :
4 i 4

22 Xi—2. 0 A (6)

i=1j=1 1=1 =2

or more generally, we can define it for the m* busy period as follows :

szkm-w YD A (7)
=1 5=1 1=13=2

Hence the average system time of a message can be written as

M nm 1
70,7, = (5) 23 (3 Xirs ZAkmﬂ ®

m=11:=1 j=1

2.2 Performing the IPA

We now consider the experiment at hand with the link service time set at 6 + Af# (the

perturbed experiment). In this case we will have an increase in the transmission time

AX;, = (H+L)Ab "
= (AG/O)X,

This means that M; will take AX; longer to get fully transmitted, hence M, will take
AX; + AX,, and so on. Hence in the first busy period we have an increase in the system

time
At = YE_OAX,
71=1 7 (10)
= (MO0 T, AX,
However, when we move to the next busy period we must take into consideration two

possibilities. Has the effect of Afl caused M, to get completely transmitted after A5 arrives?

If this is not the case (see Figure 3) then the next busy period can be represented using

equation (10). On the other hand, if this is the case then, returning to our example, we can

see from Figure 4 that

where AS] is the time where the first busy period has overlapped with the second. Hence,
it follows that

in other words

At = DSy + (A0/0) Z'jxj. (13)

M, M, M, M, M, M,
‘—A,—bk—Al-—vA: A, A reA e
2 3 D : b
3 : b : .
‘5 " . : LY : '
&4 L ' o ! N '
w4 ! N ') '
; h v . ' N
53 ¢ ; ;¥ : Lo
b +) N v
& . : : .
g 2 4 ' o % \ | S
< ' \ %) / .
S 14 Y b //' A 4
z .
—— X, ——>-<-X,—>~<—-—- X, ———Mv—hyﬁ
|mnuunmummumlmmmnwllmumlmnn.mllmmmmumnmlmnn|mnu||m|mm|m|m||nnunmu|nmulmmw I ST T T e
0 »«A»xj e el e Time —p
1 'AX 1* AX 2 . \—-’{
‘ 4 * AX; +aX 5 +AX y+8X 4
Ml Ml MJ M‘
AXl +AX 2 +AX 3

Fig. 3. Peiturbations in the sample path for case i).

M, MI M, M, M, M,
. =T . . N
— A b Ay —"A - A > Ay——reAcbia o
@ N N \ N .
-8 . o ‘ : \
z . v) ' '
8 X Cou , o
-) v . ! .
2 X . ' ' X
w4 T N o . ! .
s : ' : Voo
g3 1 ; : b
: ' . : .
3 2 . 1) v
T " 3 . : ” NS
: » Z 7 7
= + (] "
° 1 { A‘] o 7
S 14
z ' '
l¢————— X, —-»4.)(1_;:4— X, _M‘y
nmnmmmmmlmummlmmnmmm!mlml|u|.m||nnulmllmlmlmmlmmmmmlmmlummmnnlunmunmunnm (LT T T BT LT L
0 : ' 0L Time —»
* v 4 ﬁ AX) +8X 5 +AX y+8X 4
Ml Mz M3 M ¢

Fig. 4. Pcrturbations in the sample path for case i),

6

We can generalize the equations further so as to represent the m busy period (let
AS,,_1(A0) be the amount BP,,_; overlaps with the arrival of M,,+1).
Aty 1 = AS,_1(A0) + (AG/6) Zka_H-, 1 < Ny (14)
i=1
Note that AS,,_;(A#) includes all effects of the previous busy periods. We are now ready
to define the average system time after performing the perturbation:

M nm
T(O,f\/,N):() S5 (A (A0) + (A0/6) Zkaﬂ (15)

m=11i=1 J=1

We are now ready to define the sensitivity of T with respect to 6:
_ . . al T
dT/df = Al};xz}o 1\171520 AT(8,v,N)/AS. (16)

Now we assume that as the number of messages increases the summations of busy periods’

overlaps becomes negligible. In other words:

1 M nm . ’
hrBO j\lanEU (N> mzzl ; ASL-1(A8) =0. (17)

Note that we will provide a reason for this assumption later on.

Hence, the correct measure of d1'/df is reduced to

. 1 M
dT/d0 = Jim (ﬂ 3 Haf (18)
where
M nm
— Z Z"Ykm-*—j' (19)
m=1i=1

So finally the gradient estimate can be defined to be

G(N) = ZHm /(NG). (20)

m=1

We now try to estimate d7'/dvy. We note that the equation

1\,2' :‘7+L,(9 (21)

7

tells us that v is independent of L; and §.Therefore

It follows that

Hence our estimator is trivially

AX; = Av.. (22)
At = Zje 9 (23)
= Ay Z;Zl 1
M nn, M

G(N) = (322 2. /N (24)

m=1 i=1 m=1

Hence we can implement the following algorithm to calculate both d7/dy and d7'/df at the

same time.

1. Initialize: Set J, XSUM, JSUM, HSUM, GSUM = 0;

Set THETA =0,

2. Update: At departure of next message (with service time observed to be X J);

1.1)
1.2a)
1.2b)
1.3a)
1.3b)

1.4)

J+1

XSUM = XSUM +XJ
JSUM = JSUM +1
HSUM = HSUM + XSUM
GSUM = GSUM + JSUM

If link 1s now idle then XSUM =0 and XSUM =0

3. Test: If J = N then go to OUTPUT else goto UPDATE ;

4. Output: dT/df ~ HSUM/(N x THET A);

dT/dy ~ GSUM/N;

It was shown that under the assumptions of small perturbation values and in the near-

absence of “dramatic” changes in the system’s behavior due to the perturbation (i.e. as-

suming very little overlap between the busy periods, or, in other words, the system has

8

the property that limag_olimpy_ (%V) Ei‘,{:l S ASn-1(A8) =0) that an experimental
estimate, which converges to the true value of d7/df as N — oo, can be easily computed
while the nominal (unperturbed) experiment is evolving . It should be noted that this gra-
dient estimate is an infinitismal PA (IPA) estimate, and for “sufficiently small” Af the IPA

estimate will be equal to the finite difference estimator. In other words we say
Go(N) = AT(0,~, N)/ A0, Af < e (25)

where € is very small.

However, one should notice that the correct definition of the gradient involves letting
N — oo first and then Af — 0 for convergence to d7'/df, but as can be noticed in (25), the
order in which we take limits is reversed, for we let A8 — 0 then let N — oco. In order to be

able to switch the limits we must make the assumption that the system satisfies :

A A

b i AT(N;AY) b i AT(N; Ad) (26)
Neso Abo0 Af T aflo N Ab B
For it is this assumption that make it feasible to do the estimation for very small A8 and

then find the estimator for large N (hence changing the order of taking limits).

Then it follows that
I\}im ge(N) = dT1'/d8. (27)

For the class of systems where (26) holds, hence, we can make excellent use of the PA

experiment.

3 1IPA for a GI/G/1 System

We now consider the PA experiment when applied to a GI/G/1 queue. We start by defining
two sets of 1.i.d(independent and identically distributed) random variables. First we have

the set of r.v.’s
{A1, Aq, ..). (28)

9

this represents the sequence of interval times during a given experiment, and
{X1, X2,....] (29)

represents a sequence of service times. Next, we assume that X; is dependent on 6.
Finally, we make an assumption that the system is stable, that is E(X;) < E(A;). We are
interested in the mean service time T(0). This - as mentioned earlier - is close to the value
of T(8, N) for large N or

Jim T(6,N) = T(8). (30)

To estimate dT'/df, we first make the assumption that the r.v.’s X;(f) are uniformly

differentiable. We make use of this assumption and of (9) and rewrite the equation (14) as

Aty i = AS, _1(A0) + Z AXy 1) (31)
7=1
Also, we have
@ — T AY. 99
dX;/do A]};TUA‘X’/AQ' (32)

Hence, as before we try and estimate the sensitivity. We have
dT/df0 = limy_. limag—o (%) oy i AX 45/ A0
= limN_;oo (%\,) Z%:l Z%:l Z?gl d-X'km+j/d0

Thus our IPA estimator is finally

n i

1\ M om
i) = () X XX/ (31)

3.1 Sensitivity Analysis for Random Parameters

Earlier in our development, we stated that X; is dependent on . We now need to elaborate
more on this matter in order to display some features of the PA experiment. X; can be

dependent on € in one of two cases. In the first case

X; = (H + L;)0. (35)

10

Therefore

dX,’ do = H + Li
jd0 = (H+1L))
= X;/0.
However, there are other systems where
Xi=H+L;+0. (37)
Then, trivially
dX;/do = 1. (38)

What can be observed from the two results above is that A8 does not appear on the RHS.
This is the whole idea behind the IPA, for it means that we can find the estimate without
having to repeat the experiment at AQ! Furthermore, in the former result, we need not even
concern ourselves with the distribution of the r.v. X;. In the latter, case we don’t even need

to know 0.

We can now safely make the assumption that dX;/d0 can be expressed as ¥(X;,0).

The following is an algorithm for estimating dX;/d0:

1. Initialize: Set J, XSUM, HSUM = 0;
2. Update: At departure of next message (with service time observed to be XJ);
1.1) J +1;
12) XSUM = XSUM + PSI(XJ,THETA);
1.3) HSUM = HSUM + XSU M,
1.4) If link is now idle then XSUM = 0;
3. Test: If J =N then go to OUTPUT else goto UPDATE ;
4. Output: dT/d0 ~ HSUM/N;

11

3.2 Consistency of IPA

We now want to insure that the assumption that
lim go(N) = dT/d0. (39)

is solid. But, assuming for the moment that the above assumption is true, we can also make

the following inference :
Jim E(Go(N)) = dT/do. (0

We can prove this fact for an M/M/1 (due to the simplicity of the proof). This system
is described by an exponentially distributed arrival times, with rate A and mean 1/}, and
by an exponentially distributed service times with mean 0. Finally the traffic intensity is

defined by p = A0. We are also given

T(0)=0/(1—p)
E(B) =0/(1 - p) (41)
E(B)? =20%/(1 - p)°

where B is a r.v. for the time length of an arbitrary busy period. Differentiating T', we

get
dT/d0 = 1/(1 — p)>. (42)

Also since we can see that 0 is a scale parameter of X;, we have
dX;/d0 = X;/0. (43)

Since we are assuming that the estimate is consistent we can say

= YJ_ dX;/do
g 1=1 dX /) (44)
= (1/0) Z?:l Xi

Looking at Z‘f._.l X; we can see that it is the time from the start of a busy period till the

departure of the j** message in this busy period. This summation can be rewritten as the

12

time from the start of the busy period to the time of the arrival of message j (denoted by

zj), plus the system time of the message. Or,
9=z +1;)/0. (45)
Now working with the expected value of g (to simplify our proof) we get
E(g) = (E(z) + E(t;))/0 (46)

Analyzing the above equation we see that the expected system time was defined by us
carlier to be T'(0). On the other hand, E(z;) is the expected time for the message to arrive.
Hence, one of the following two cases may be the situation. Either the server is idle (denote

that by I), or the system is busy (denote that by). In other words
E(z;) = (E(z;|1)pr + L(2|0)ps. (47)
But when the system is idle there is no busy period, therefore z; is zero. Therefore
E(z;) = E(z;(6)ps. (48)

where pj is the utilization of the server p, and E(z;|b) is the average time of a busy period

seen by a random arrival into the BP (which has been found to be E(B)*/2E(B)). Thus
B(z;) = pB(B)*/2E(B). (49)
going back to E(g), we now have
E(g) = (oE(B)*/2E(B) + T(0))/0. (50)

Substituting the values the we are given in (41) we get

E(g) = (p0/(1—p)*+0/(1—p))/0
= 1/(1—p)*

thus proving the assumption made in (39).

(51)

13

4 TPA for General Networks

In the previous scction, the main ideas of infinitismal perturbation analysis were illustrated
using a single server queue model of a communication link. To make use of IPA in realistic
situations, we have to look at IPA for more general systems. We are going to address the
problem of finding IPA algorithms for the case of a simple production line with just two

machines and then for a general network of servers.

4.1 IPA for a Simple Production Line

IPA can be performed for a simple production line consisting of two servers (machines) and a
buffer in between as shown in the figure. The production line can be thought of as a system

consisting of two computers and one buffer.

Buffer (Size B)

Machine ! N Machine
Uninterrupted Throughput
Supply T
of
Parts

A simple production line. -

Server 1 (S;) is a machine whose cycle time depends on a parameter 0;. We can assume
that S; has an uninterrupted supply of parts to work on. After S; finishes its work cycle
on a part, it places the part in the buffer. The second machine S; picks one part from the
buffer, works on it for a cycle time (which depends on a parameter 0;) and then releases it
to a finished goods arca. The size of the buffer is B. If the buffer is full when S; completes
a part then the part stays at S;, which is then unable to work on another part and is said

to be blocked. S; remains blocked until S; finishes its current cycle, releases its part, and

14

takes the next part from the buffer, thereby releasing a buffer space. We shall assume that
all transfers take place in a negligible amount of time, and that the finished goods area is
never blocked. The performance measure we shall consider of interest for this system is its
steady state throughput (number of parts produced per unit time) which we shall denote
7(01,82). We can define an experiment on this system, starting with no parts in Sy, S, or
the buffer, and ending when the Nth part is completed by S,. If T" is the length of time for

this experiment, then the experimental estimate of the throughput is

7(01,0,,N) = N|T (52)

Under some conditions, this estimate will satisfy

1\}1m 7'\'(01,02,]\[) = T(01,02) (53)

which is desired for a good experimental estimate.

20 P v v ; Y
Y, Y, AT AR AL A A A A

“W<START OF EXPERIMENT TIME — »

Nominal sample path for the production line.

A typical sample path is shown in the figure with N = 10, X; and Y; denotes the cycle
time for S; and S; for the sth part. The vertical axis represents the number of parts at
Sz and at the buffer. The size of the buffer B is 2 for this example, part 7 is denoted

by P; and dashed lines implies that S, is idle, crosses implies that S; is blocked. Our

15

goal then is to develop an IPA algorithm to estimate d7/d0 for this system. Introducing a
perturbation A# in this system, the perturbed sample path is shown in the figure . Where
AXXi(0: + Ab,) — Xi(0,)) denotes the change in cycle times at S; due to a change Af; in
the parameter 6;. It should be clear that there is an implicit assumption for the perturbed
path shown in the figure, namely that the perturbations are small enough so that the order

of events does not change, such assumption is standard in IPA.

ax, AX(H Xy BX 48Xy BX 48X, BX0..8X g AX{HOXy BXiHAX 4 AX(AX;# Xy AX(HOX,
Sl . : . : J'-x)(xx . , V v q $3
X]: X, ‘ X, ' X, Xy ‘, X : X4 :Xs VX s Xy :X“- Xy2 !
4 ' . 0 y ' N , : '
Bl 4 "
— ' '
aX, AXjrax,
P P B A 53
2 Y, | Y, 'Y' Y,
nel e »(—u H NN
LAX| g\
v \ v Y \ */ / ‘F
AX| X ¢ AX 48X/
“~—START OF EXPERIMENT TIME —» X+ X,

..... AT=8X 48X 5+ 8X ¢ +8X
Perturbations in the sample path for the production line.

With the above assumption, stating the IPA algorithm becomes particularly simple.
Letting AC; and AC, be accumulators associated with S; and S;, AC; is the perturbation
at .S; for the last part that left S;, and the arrows (— |) shows the values of the accumulators.
Then we can develop three rules, the first is that whenever a part P; has been served at S
the first accumulator is incremented by AXj;, the second is that if P; finds S, idle, then AC,
gets the value of AC; and finally if P; unblocks S; by departing from S, then AC) gets the
value of AC,. We can then proceed to write the algorithm for calculating the gradient of 0;.

At the end of the experiment, AT = AC,, and as shown above AC; is the sum of some
_of the AX; values, say for 7 € [. Under the assumption that the random values X;(0) have

the property that dX;/df can be expressed as ¥(X;,), we can say that

16

dT : ACZ dX,
= — — ,i, 54
diy A%lrgo Ab, % do, §¢(A 01) (54)

and since N is fixed by definition of the experiment, then

d7 dT

—o= = —(N/T*) == = —(N/T?) 3 _4(X;, 01) (55)
do, do, el

Which implies that if we accumulate (X}, 0) instead of AXj, in the first rule above, and call
the accumulators A; and A,, then after the experiment is performed, the value —(V/T?)A,

will be the IPA estimate of d7/df;. The algorithm is then developed as follows :

1. Initialize: Set Ay, A, = 0;
Set THET AL = 0y
2. Update: Whenever a part (say P;) completes service, check these conditions :
1) If P; completed service at S; then
Ay — A+ PSI(X;,, THETAl);
2) If P; leaves S; and terminates an idle
period of Sy then Ay « Ay;
3) If P; leaves S; and terminates a blocked
period of S; then A; « Ay;
3. Test: If 53 has completed N parts go to OUTPUT
else goto UPDATE ;
4. OQutput: Let T be the total time since the start of the experiment;
The IPA estimate of d7/d0 is —(N/T?)A,.

4.2 IPA for General Networks with Finite Buffers

Considering a general network with finite buffers, having a single server at each station,

we can generalize the algorithm described above easily to allow for more than two servers.

17

It should be noted that the only times when perturbations propagate from one server to
another are when idle or blocked intervals are terminated by a customer moving from one
server to another. Thus the propagation rules 2 and 3 in the above algorithm can be modified
by allowing for any servers S; and S instead of S; and S; and naming the associated
accumulators A; and A;; and thus replacing A; « A; by Ax «— A;. In general network it
is possible to have a situation of “chain” blocking, where, for example, Sy is blocked by S;,
and then in turn the buffer at Sk gets full and it ends up blocking S;. In this case we just
need to implement the propagation for each unblocked server in turn, but there is no change
in the rule. A further generalization would be to change the first condition statement in the
2-server algorithm to allow the use of the accumulators associated with different servers. It
is also possible to state the algorithm in such a way so that it can compute all K gradients

at the same time as follows : (A;; is the accumulator at S; for gradient with respect to 6;)

1. Initialize: Set A;j, 1= 1,...,K;7=1,..,K ;
Set THETA; =0;,i=1,...,K;
2. Update: Whenever a customer (say C) completes service, check these conditions :
1) If C completed service at S; then
Ay — A + PSI(i,X,TfIETA,-);
2) If C leaves S; and terminates an idle
period of S,, then A,.; «— Ajj,
for j = 1,..., K; (If there is a chain of blocking
then continue this procedure through the chain)
3. Test: If Send has completed N parts go to OUTPUT
else goto UPDATE ;
4. Qutput: Let T be the total time since the start of the experiment;
The IPA estimates of the K gradients dr/d0;

G=1,...K) ate =(N/T?)Aeng; (G =1,..,K).

18

5 Extensions of IPA

In some cases, the IPA technique discussed above will fail to work. One instance might be due
to the assumption that small changes in the system parameter 6 will not cause coalescing of
busy periods in a GI/G/1 queue because of small Af. Suppose that the performance measure
of interest is the average number of messages sent between idle periods of a communication
link. If we model the link as a single server queue, this performance measure is the average
number of customers served in a busy period (BP). Denoting this average by £(0), then a

simple experimental estimate for () would be to observe M BPs and then let

a

M

B0, = (57) 2 59

where n,, is the number of customers served in BP,,. Considering the arguments pre-
sented in the IPA, we can see that IPA is based entirely on the assumption that no BPs
will coalesce. If we make A0 small enough so that no BPs coalesce, then each n,, value
will remain the same, so that there will be no change in the estimate of the performance
measure. Thus, the IPA estimate of sensitivity will be zero ! It is clear that this is wrong
and thus IPA failed in this example. IPA ignores the effects of some events in the system,
when the probability of occurrence of these events, multiplied by the effect of the events

on the performance is significant, IPA fails. This motivates some extensions which enable

gradient estimation for a wider class of systems.

5.1 Smoothed Perturbation Analysis (SPA)

Motivated by the failure of IPA to work for the simple case above, the idea of using condi-
tional probabilities was introduced to develop an extension for the IPA. A conditioning vari-
able can be used to decompose the gradient estimate expectation expression. The fact that

more information is used in developing the conditional probability counts for the “smoother”

19

kind of performance measure estimate curve that is obtainable by using this method. For

example, we can ask the question, for a given A#, what is the ezpected change in the value

of n;, based on the observed BF;.

5.2 Extended Perturbation Analysis (EPA)

For systems that can be represented by markov chains, a new approach that may overcome
the potential inconsistency of IPA can be applied. The idea behind the extended perturbation
analysis is the fact that the perturbed and unperturbed svstems should be statistically
evolving similarly once they enter a common state a, due to their markovian property. This
method works by choosing a finite Af and predicting, from the nominal path. where the
perturbed path would have branched to a different state, say y, while the nominal path
continues in, say, state . Up to this point, an [PA-like estimator is used to compute the
effects of perturbation, but at this point, the computation is “frozen”. The algorithm then
waits for the system to enter state y during the nominal path, then EPA restarts. When an
event order change occurs, the state sequences of the nominal path (NP) and the perturbed
path (PP) may or may not start to differ depending on whether some discontinuous change
is involved (e.g., a job originally going to server A may now go to server B). As shown in the
figure below, if w; and w, are two state sequences of a Markov DEDS and the state sequence
jumps on from S; on w; to S, on wy instead of S, on wy, subsequent perturbations involving
state changes may cause further deviations so that a perturbed path could be made up from
segments of state sequences from wy, wy,...,w;....

We can see right way that EPA cannot be as efficient as IPA, since it may remain “inac-
tive” for significant sections of the nominal experiment. However, there are two factors that
make its performance better than one might expect. The first is that in most applications
we do the gradient estimation with respect to a number of parameters simultaneously, it will

probably turn out that several of the gradient computations are “active”, on average, during

20

the observations and the savings is still better compared to multiple experimentation. The
second is that from a practical point of view, one can often aggregate the states of the system
to fewer subsets, and use the aggregate state to decide whether to activate or deactivate the
EPA calculation. Not only does this keep the computation active for longer segments of the
experiment, but it also enables EPA to be applied to non-Markovian systems.
State Sequence
oy sa,ss,sh,su,sz,sy,sp,sa.sr,s;k_,se,s,.,s‘,sa,su.sj,sy,su,sc,sh,s,,sh,so, :

@y se,sn,sp,su,st,so,sm,sg,sz,sd,sj,sl,s},sm,sa,se,ss.so,sp,sh,s‘sa,
Fig. 4. State sequences of a Markov DEDS.
Slate Sequence

oy

oy Sa,SS,Sh,Su,SZ,SY Sp,sa,Sr,SK,Se,S‘-,SI,Sa,Su,SJ Sy SU'SC’Sh’sl'Sh'SO’ .
XY _’) . ___j o o o o o

Wy Se,Sn,Sp,Su,St,So,Sm, Q'SZ'Sd‘SJ S‘,S],Sm,Sa,Se,SS,SO,SD,Sh,S‘Sa, .
o v o @
L]
. \
. \
* \

A e e e e e e e - -

w0 Sy, sn,so,sv SesSbrSmiSa:ScSrSs sw,ss,se,sx,se,sa,sd,s,.,slsa,sn,sh,so, .

——————— + Actual perturbed path (PP)
Nominal path (NP)

vee ee -_+e Constructed perturbed path (CPP)
~_ A - .

5.3 Other Perturbation Techniques

Another Perturbation technique is finite perturbation analysis (FPA), this technique was
introduced to overcome the IPA assumption that events do not change order. However, FPA
considers changes in order of events to a pre-specified limit, for example, it may consider
only “first order” changes, that is, changes in the order of adjacent events, and ignores any
effects of changes in order beyond adjacent events. The way it works then is to introducc
perturbations and propagate them while observing the nominal path, but limiting its calcu-
lations by only extrapolating to predict the effect of such changes in order. Originally FPA
was heuristic and experimental in nature, however, recent research has been performed to

provide more theoretical foundations for it.

21

Other techniques to make IPA work include changing the system parameter under con-
sideration to transform problems into “easier” versions, or to versions that have already been

solved. Using a different representation for the system sometime helps in performing IPA.

6 Research Issues and Future Work

Many problems regarding discrete event dynamic systems in general, and perturbation anal-
ysis as an evaluation technique remains open. For example, performing PA for a discrete
paramet.er‘ 6 is one such interesting problem. In practical systems, many parameters (such
as buffer sizes, or number of servers at a station) are discrete in nature. It should be noticed
that IPA, by its nature can be applied only to continuous parameters. Understanding and
expanding the domain of IPA needs to be addressed, in fact, to “automate” the process of
generating algorithms to calculate the sensitivity of a performance measure remains an open
problem. To be able to construct a preprocessing stage, where its inputs are the system
specification and the performance measure and parameters of interest, and the output as
an IPA algorithm to be run while the nominal experiment is performed, is one challenging
problem for researchers. More work still remains to be done on developing efficiency and
accuracy measures for the PA output. Trying to get the “maximum” amount of information

from a sample path is another long-term goal.

References

[1] Xi-Ren Cao, “The Predictability of Discrete Event Systems”, Proceedings of the 27"

Conference on Decision and Control, December 1988.

[2] Y. Ho, “Performance Evaluation and Perturbation Analysis of Discrete Event Dynamic

Systems”, IEEE Transactions on Automatic Control, July 1987.

22

3]

(7]

[11]

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and

Computation, Addison-Wesley, 1979.
Zvi Kohavi, Switching and Finite Automata Theory, McGraw-Hill, 1979.

H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-
Hall, 1981.

Yong Li and W. M. Wonham, “Controllability and Observability in the State-Feedback

Control of Discrete-Event Systems”, Proc. 27% Conf. on Decision and Control. 1983.

C. M. Ozveren, Analysis and Control of Discrete Event Dynamic Systems : A State

Space Approach, Ph.D. Thesis, Massachusetts Institute of Technology, August 1989.

Rajan Suri, “Perturbation Analysis : The State of the Art and Research Issues Ex-

plained via the GI/G/1 Queue”, Proc. of the IEEE, January 1989.

P. J. Ramadge and W. M. Wonham, “Modular Feedback Logic for Discrete Event

Systems”, SIAM Journal of Control and Optimization, September 1987.

P. J. Ramadge and W. M. Wonham, “Supervisory Control of a ("lass of Discrete Event

Processes”, SIAM Journal of Control and Optimization, January 1987.

G. E. Révész, Introduction to Formal Languages, McGraw-Hill, 1985.

