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Abstract 

In this paper we present a.n overview for the development of a theory for analyzing 

and predicting the behaviour of discrete event dynamic systems (DEDS). DEDS are 

dynamic systems in which st,ate tra.nsitions are caused by internal, discrete events in 

the system. DEDS are attracting considerable interests, current applications are found 

in manufacturing systems, communica.tions and air traffic systems, future applica.tions 

will include robotics, computer vision and artificial intelligence. We will discuss the 

perturbation analysis technique (PA) for evaluating the performance of DEDS. 

Keywords : Communication Networks, Control Theory, Dynamic Systems, Discrete Event 

Systems, Perturbation Analysis, Perforn~a~lce Evaluation, Queueing Networks. 

1 Introduction 

In this paper, we describe a recently developed framework for analyzing and evaluating the 

performance of discrete event dyna,mic syster~ls (DEDS) called perturba.tion a.nalysis (PA) 

[1,2,8]. T h e  approach used in this framework is a quantitative a p p r ~ a , ~ h  that  focuses on the 

performance measures of DEDS. There a.re other state space approaches that  collcentrate 

on the  qualitative a,spects of DEDS [6,7,9,10], however, we shall concern ourselves only with 

the PA technique a.s it is more suita.ble for a.nalyzing communication networks. 



Discrete event dynamic systems (DEDS) are dynamic systems (typically asynchronous) in 

which state transitions are triggered by the occurrence of discrete events in the system. Many 

existing dynamic system have a DEDS structure, manufacturing systems and communication 

systems are just two of them. The PA approach to  analyzing DEDS is different from the 

analysis techniques for the state space approach, the existence of a consistent and pre- 

defined automata-like model of the system under consideration is not necessary to perform 

PA. For example, if we consider a serial production line with A4 stations with a queue space 

of size I(, for each station. Then the total number of states for such a system would be 

(flz,(~i + 1))(2"), which can aillount to billions for relatively sillall values of K ,  and M. 

It is quite clear that modeling such systerns as finite state machines is inefficient, if not 

impossible. It should also be nleiltioned that the finite state machines approach is more 

suitable for answering qualitative rather than quantitative questions. 

Perturbation a.na1ysis (PA) is a, t,echnique that calcula~t~es the sensitivity of performance 

measures of DEDS with respect to system parameters by aaalyzing its sample path. The 

object of PA is to obtain the perturbed performance from a nominal experiment or sample 

path without doing a perturbed experiment. To a,void doing illore than one experiment or 

simulate a perturbed experiment is the goal of PA. 

2 Infinitesimal Perturbat ion Analysis (IPA) 

To present the idea behind IPA, we shall first introduce a simple system (see Figure 1). It 

consists of a buffer, call it A,  where messa.ges a,rrive and acre pla,ced in a FIFO queue, and is 

connected via a link to another buffer, call it B, where the messages are received. 

Consider the following definitions: 

8 = link service time (s/bit) 

H = header length (bits) 



L; = length of message i (bits) 

We define the "service time" to be the time it takes to transmit a nlcssage i from A to 

B assuming the message does not wait in the queue before it gets sent. PVc denote this by 

A r r i v i n g  

Mcssagcs 

Let us also define the "system time", ti ,  to be the time since a message i arrives at A till 

it is completely received by B. Finally let us call our performance measure T(0, y). This can 

Fig. 1. Link in a comniunicaiion nc\work. 
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be approximated by using the mean system time, T(0, y, AT), where 

0 k ~ ~ ]  ---+ 

D c s t i n a ~ i o n  N o d c  
U 

Note that as N -+ m, T(O, y, N )  converges to T(0,  y). 

For sensitivity estimates, we use dT/dO and dT/dy. A good estimate for dT/dO is 

P = [F(o + AO, y, N )  - f ( 0 ,  y, N)] /AO.  (3) 

Similarly a good estimate for dT/dy is 

As can be seen, to obtain thc estimates above one nccds onc more expcriment at 0 + A0 

and another aty + Ay. 

The problein here is to cl~oosc a value for A0 (and similarly Ay). For, if we choose to 

large a value we will not get a good estimate of the gradient. On the other hand, if we 



choose A0 to be too small, we may amplify the noise interference present in ?(o, y + AT, N) 

and F ( 8 ,  T, N). In this paper, however, we will not concern ourselves with this experimental 

problem. 

2.1 An Unperturbed Experiment 

Figure 2 displays the time evolution for a scquencc of messages, that arrive and dcpart the 

buffer of A, within a certain period of timc. Where A; is the time between the arrival of 

and A4; (with thc exccption that Al is from the start of the expcrirnent). We define a 

busy period (BP) to be thc time whcn the system is busy processing mcssagcs. 

t t 
Fig. 2. Tinlc cvol~~i ion 01 Ilic cs),crimrnl 

In our example, we start off with the buffer empty, and have to wait a time of length Al 

for the first message to arrive, and another X; for the messagc to be completely transmitted 

(hence total time is Al + XI). However, during this time M2, followed by M3 arrive at the 

queue and have to wait for MI to get fully transmitted. In the case of M2 the arrival timc is 

A, + A, and the departure time is Al + X1 + X2. More generally, M; has an arrival timc 

of to  + ~ i = ,  Aj and a departure time of to + xi=, Xj, where lo = A1. Hencc we can define 

the system time to be 



where the sum is zero for the case when i = 1. Note that this sum only holds up until the time 

of the complete departure of the fourth message (i.e. after the first busy period). Therefore, 

we can rewrite the system time ( as would apply to our specific example ) in the following 

way : 

or more generally, we can define it for the lnth busy period as follows 

Hence the average system time of a 1ilessa.g.e ca.11 be written a,s 

2.2 Performing the IPA 

We now consider the experinlent a.t ha.nd wit,ll the link service time set a t  19 + A0 (the 

perturbed expel-iinent). In this ca.se we will have a.n increa.se in the tra.nsmission time 

This means that Ml will ta.ke AX, longer to get, fully transmitted, hence 1\f2 will take 

AXl + AX,, and so on. Hence in the first busy period w e  have an increase in the system 

time 

At, = Cj=, AX, 

= (AO/O)  c;=~ A - Y ~  

However, when we move to  the next busy period we must take into consideration two 

possibilities. Has the effect of Ad caused M4 to get completely transmitted after M5 arrives? 

If this is not the ca.se (see Figure 3 )  then the next busy period can be represented using 



equation (10). On the other hand, if this is the case then, returning to our example, we can 

see from Figure 4 that 

At5 = ASl + AX5. (11) 

where AS1 is thc time where the first busy period has overlapped with the second. Hence, 

it; follows that 

in other words 
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Fig. 3. P c ~ ~ ~ r r b ~ i ~ i o n s  in ~ h c  sample (,a111 lor c;lsc 1). 

Fig. 4. I'crlurl~al~ons in Ihc s11nl)lc p,lth f o r  casc i i ) .  



We can generalize the equa,tions further so as to represent the mth busy period (let 

ASm-l(Ad) be the amount BP,,-l overlaps with the arrival of Mk,n+l). 

Note that ASm-l(Ad) inclucles all effects of the previous busy periods. We are now ready 

to  define the average system time after performing the perturbation: 

We are now ready to define the sensitivity of with respect to 6 :  

dT/dO = lim lim A?(d, ?, N ) / A d .  
ae-o N-CXP 

Now we assume that as the number of messages increases the sun~mations of busy periods' 

overlaps becomes negligible. In other words: 

Note that we will provide a, reason for this assumption later 011. 

Hence, the correct measure of dT/dO is reduced to 

12.I 

d T / d @  = lim (h) H,/O. 
N-m 

nz=l 

where 
M n, 

So finally the gradient estimate can be defined to he 

We now try to estimate dT/dy. We note tha.t t.he ecluat.ion 



tells us that y is independent of Li and 0.Therefore 

It follows that 

a t ,  = z;=, ay  
= a? 1 

Hence our estimator is trivially 

Hence we can implement the following algorithm to calculate both dT/cly and clT/clQ at the 

same time. 

1. Initialize: Set J, X S U M ,  J,Sli114, H,tj'li!\J, CSl'Ail = 0 ;  

Set T H E T A  = 0; 

2. Update: At departure of nest message (with service time observed to be SJ); 

1.1) J + 1 

1.2a) X S U M  = XSUAZil + X J  

1.2b) J S U M  = JSI! M + 1 

1.3a) HSlJAd = H,Sl:114 + AY,S'l;Al 

1.313) c;lsrfnd = c;,wn/r + J ~ ~ Y ~ I  

1 .4 )  If link is now idle then AY6s'111V1 = 0 and X'SlI'M = 0 

3. Test: If J = N then go to OUTPUT else goto UPDATE ; 

4. Output: dT/dB FZ H S U M / ( N  * T H E T A ) ;  

d T / d y  FZ GSUIZl/A;; 

It was show11 that under the assumptioils of small perturbation values and in the near- 

absence of "dramatic" changes in the system's behavior due to the perturbation ( i.e. as- 

suming very little overlap between the busy periods, or, in other words, the system has 



the property that  limas-o limN-., (5 )  ~ k ~ = ~  Cr&nl ASm-I (A0)  = 0 ) that an  experimental 

estimate, which converges t o  the true value of dT/d0 as N -t oo, can be easily computed 

while the nominal (unperturbed) experiment is evolving . It should be noted that  this gra- 

dient estimate is an  infinitismal PA (IPA) estimate, and for "sufficiently small" Ad the IPA 

estimate will be  equal to  the finite difference estimator. In other words we say 

where 6 is very small. 

However, one should notice tha,t the correct definition of the gradient involves letting 

N -t oo first and then A0 + 0 for convergence to dT/dH, but a,s call be noticed in (25), the 

order in which we take limits is reversed, for we let AH + 0 then let N -t oo. In  order to  be 

able to  switch the  limits we r n ~ i a t  mnkc the a.ccurnpt1011 thnt  t h f  s y s f c m  snti.$,fie.r; : 

liim li111 
hT(N; AH) 

= lim liin 
af(lv; ao) 

N-WAB-0 A#-OIV-czr' AH (26) 

For it is this assumption that make it feasible to do the estimation for very small A0 and 

then find the estimator for large N (hence changing the order of taking limits). 

Then it follows that  

lim ijB(A1) = dl1/d0. 
N-02 (271 

For the class of systellls where (26) holds, hence, we can nlalie excellent use of the PA 

experiment. 

3 IPA for a GI/G/ l  System 

We now consider the PA experinlent when applied to a G I / G / l  queue. We start  by defining 

two sets of i.i.d(independent and idelltically distributed) randoin variables. First we have 

the set of r.v.'s 

('41, .... } .  (2s) 



this represents the sequence of interval times during a given experiment, and 

represents a sequence of service times. Next, we assume tha t  X1 is dependent on 0. 

Finally, we make a n  assumption that the system is stable, that  is E(Xi) < E ( A i ) .  We are 

interested in the mean service time T(0).  This - as mentioned earlier - is close to the value 

of ? ( B ,  N) for large N,or 

lim F ( 0 ,  N) = T(0).  
N-CQ 

To estimate dT/dO, we first make the assumpt,ion t11a.t the r.v.'s X;(O) are ulliforillly 

differentiable. We make use of this assuinptioil and of (9)  and rewrite the equation (14) as 

Also, we have 

dX, /dO = lim AX, 1 4 0 .  
AQ-0 

Hence, as before we try and estimate the sensitivity. We have 

dT/dO = lirnN-, lirnas+o (5 )  ~ z = ~  EC"ZZ1 E:'; axk,+,/AO 
(33) 

- - l i r n , ~ - ~  (8) E:',=,  EM^ E:Z~ dd?im+, / d o  

Thus our IPA estimator is finally 

M n,, i 

m=1 i=1  j=1 

3.1 Sensitivity Analysis for Random Parameters 

Earlier in our development, we stated that ?it is dependent on 0.  \Ve now need to  elaborate 

more on this matter in order to displaj soille feature5 of the PA experiment. -1, can be 

dependent on 0 in one of two cases. In the first case 



Therefore 

dXi/dO = (N + L;) 

= &lo. 
However, thcrc are other systems where 

Then, trivially 

dX;/dO = 1. 

What can be observed from the two rcsults above is that A0 does not appear on [he RfIS. 

Tltis is the wltole idea behind tlte IPA, for it means that we can find tlte eslitnale without 

having to repeat .?he experiment at AU! Furthermore, in the former result, wc need not even 

concern ourselves wilh the distribution of the r.v. X, .  In the lalter, case we don't even need 

to know 0 .  

We can now safely make the assumption that clX;/dO call be expressed as $(Xi, 0) .  

The following is an algorithm for estima.ting dXi/dO: 

1. Initialize: Set J, X S U M ,  HSUM = 0;  

2. Update: At departure of next inessage (with service time obscrvcd to be X J ) ;  

1.1) J + 1; 

1.2) X S U M  = X S U M  + P S I ( X J , T H E T A ) ;  

1.3) I ISUM = HSUM + X S U M ;  

1.4) If linl< is now idle then X S U M  = 0; 

3. Test: If J = N thcn go to OUTPUT else goto UPDATE ; 

4. Output: clT/dO w I ISUhd/N;  



3.2 Consistency of IPA 

We now want to insure that the assumption that 

lim tjo(N) = dTld0. 
N-rm 

is solid. But, assuming for tllc moment that the above assumption is true, wc can also make 

the following inference : 

lim E(ijo(N)) = dT/dB. 
N 4 m  

We can prove this fact for an M/M/1 (due to the simplicity of the proof). This system 

is described by an exponentially distributed arrival times, with rate X and mean l / X ,  and 

by an exponentially distributed service times with mean 0. Finally the trafic intensity is 

defined by p = XO. We are also given 

T(O) = @/(1 - P )  

E ( B )  = 0/(1 - P) (41) 

E ( B ) ~  = 202/(1 - p)3 

where B is a r.v. for the time length of an arbitrary busy ~ e r i o d .  Differentiating T, wc 

get 

dT/dO = 1/(1 - p)2. (42) 

Also since we can see that 0 is a scale parameter of Xi, we have 

Since we are assuming that the estimate is consistent we can say 

Looking at  X:. we can see that it is the time from the start of a busy pcriod till the 

departure of the j th message in this busy period. This summation can be rewritten as the 

12 



time from the start of the busy period to the time of the arrival of message j (denoted by 

zj), plus the system time of the message. Or, 

Now working wit11 the expected value of g (to simplify our proof) we get 

Analyzing the above equation we see that the expected system time was defined by us 

earlier to be T(0). On the other hand, E(zj) is the expected time for the message to arrive. 

Hence, one of the following two cases may be the situation. Either the server is idle (denote 

that by I), or the system is busy (denote that by b). In other words 

But when the system is idle there is no busy period, therefore zj is zero. Therefore 

where pb is the utilization of the server p, and E(zjlb) is the average time of a busy period 

seen by a random arrival into the BP (which has been found to be E(B)2/2E(B)) .  Thus 

going back to E(g),  we now have 

Substituting the values the we are given in (41) we get 

thus proving the assumption made in (39). 



4 IPA for General Networks 

In the previous scction, the main ideas of infinitismal perturbation analysis were illustrated 

using a single server queue model of a communication link. To make use of IPA in realistic 

situations, we have to look at  IPA for more general systems. We are going to address the 

problem of finding IPA algorithms for the case of a simple production line with just two 

machines and then for a general network of servers. 

4.1 IPA for a Simple Production Line 

IPA can be performed for a simple production line consisting of two servers (machines) and a 

buffer in between as shown in the figure. The production line can be thought of as a system 

consisting of two computers and one buffer. 

BufCer (Size D) 

hlachine  Machine 

Supply a T w  hro;k!hput 
Uninterrupted 

of 
Parts 

A simple production line. , 

Server 1 (S1) is a machine whose cycle time depends on a parameter 01. Wc can assume 

that S1 has an uninterrupted supply of parts to work on. After S1 finishes its work cycle 

on a part, it places the part in thc buRer. The second machine S2 picks one part from thc 

buffer, works on it for a cycle time (which depends on a parameter 0 2 )  and then releases it 

to a finished goods arca. The size of the buffer is B. If the buffer is full when S1 completes 

a part then the part stays at S1, which is then unable to work on anothcr part and is said 

to be  blocked. S1 remains blockcd until S2 finishes its current cycle, releases its part, and 



takes the next part from the buffer, thereby releasing a buffer space. We shall assume that 

all transfers take place in a negligible amount of time, and that the finished goods area is 

never blocked. The performance measure we shall consider of interest for this system is its 

steady state throughput (number of parts produced per unit time) which we shall denote 

r ( & ,  82). We can define an experiment on this system, starting with no parts in S1, S2, or 

the buffer, and ending when the Nth  part is completed by S2. If T is the lcngth of time for 

this experiment,, then the experimental estimate of the throughput is 

.i(01,82, N)  = NIT 

Under some conditions, this estimate will satisfy 

lim +(01,02, N) = 7(01,02) 
N4oo 

which is desired for a good experimental estimate. 

Nominal sample path for the production line. 

A typical sample path is shown in the figure with N = 10, Xi and Yt: denotes the cycle 

time for S1 and S2 for the it11 part. The vertical axis represents the number of parts at 

S2 and at the buffer. The size of the buffer B is 2 for this example, part i is denoted 

by Pi and dashed lines implies that S2 is idle, crosses implies that S1 is blocked. Our 



goal then is to develop an IPA algorithm to estimate d ~ / d O  for this system. Introducing a 

perturbation A8 in this system, the perturbed sample path is shown in the figure . Where 

AXI=(X;(O1 + A & )  - Xi(&)) denotes the change in cycle times a t  S1 due to a change AO1 in 

the parameter 01. I t  should be clear that there is an implicit assumption for the perturbed 

path shown in the figure, namely that the perturbations are small enough so that the ordcr 

of events does not change, such assumption is standard in IPA. 

m l + a 2  A x 1 + . , , A X 3  A x , +  ... A X ,  AXI+. . .  A X 5  A x I + A x 2  ml+M2+ A X 6  M i e A x 2 *  AX6*AX7 

I .  y :-+I :--+I r" 9 - 
s, 1 

X I  ; x 2 

s, - - -  - - - - - - - - . - -  
Y, : 

:+ 
' A x  
t 

-START OF E X P ~ I M E N T  TIME ---+ 

Perturbations in the sample path lor the production line. 

With the above assumption, stating the IPA algorithm becomes particularly simple. 

Letting AC1 and AC2 be accumulators associated with S1 and S2, AC, is the perturbation 

a,t ,Sj for the last part tha.t left Sj, and the arrows (t I) shows the va,lues of the accumulators. 

Then we can develop three rules, the first is that whenever a part Pi has bccn served at  S1 

the first accumulator is incremented by AX;, the second is that if Pi finds S2 idle, then AC2 

gets the value of ACI and finally if Pk unblocks Sl by departing from S2 then ACI gets the 

value of AC2. We can then procced to write the algorithm for calculating the gradient of 01. 

At the end of the experiment, A T  = AC2, and as shown above AC2 is the sum of some 

of the AX; values, say for i E I .  Under the assumption that the random values X;(O) have 

the property that dX;/dO can be expressed as $(X;, 0), we can say that 



dT --  AC2 dX; 
- lim - - - = C$(Xi ,Ol )  

dOl nol-0 AO1 - 5 do1 

and since N is fixed by definition of the experiment, then 

Which implies that if we accumulate $(Xi, 0) instead of AX;, in the first rule above, and call 

the accumulators Al and A2, then after the experiment is performed, the value -(N/T2)Az 

will be the IPA estimate of d.i/dOl. The algorithm is then developed as follows : 

1. Initialize: Set Al, A2 = 0; 

Set THETA1 = 4; 

2. Update: Whenever a part (say Pi) completes service, check these conditions : 

1) If Pi completed service at  Si then 

Al +-- Al + PSI (Xi ,  THETA1); 

2) If Pi leaves S1 and terminates an idle 

period of Sz then A2 + Al; 

3) If Pi leaves Si and terminates a blockcd 

period of Sl then Al t A2; 

3. Test: If Sz has completed N parts go to OUTPUT 

else goto UPDATE ; 

4. Output: Let T be the total time since the start of the experiment; 

The IPA estimate of d ~ / d O  is -(N/T2)A2. 

4.2 IPA for General Networks with Finite Buffers 

Considering a general network with finite buffers, having a single server at  each station, 

we can generalize the algorithm described above easily to allow for more than two servers. 



It should be noted that the only times when perturbations propagate from one server to 

another are when idle or blocked intervals are terminated by a customer moving from one 

server to another. Thus the propagation rules 2 and 3 in the above algorithm can be modified 

by allowing for any servers S; and Sk instead of S1 and S2 and naming the associated 

accumulators A; and Ak and thus replacing A2 t A1 by Ak t A;. In general network it 

is possible to have a situation of "chain" blocking, where, for example, Sk is blocked by S,, 

and then in turn the buffer a t  SIC gets full and it ends up blocking Sj .  In this case we just 

need to implement the propagation for each unblocked server in turn, but there is no change 

in the rule. A further generalizatioil would be to change the first condition statemeilt in the 

2-server algorithm to allow the use of the accumulators associated with different servers. It 

is also possible to state the algorithm in such a way so that it can compute I( gradients 

at  the same time as follows : (Aij is the accumulator at  S; for gradient with respect to Oj) 

1. Initialize: Set Aij, i = 1, ..., I(; j = 1, ..., K ; 

Set THETA;  = a;, i = 1, ..., I(; 

2. Update: Whenever a customer (say C) completes service, check these conditions : 

1) If C completed service a t  S; then 

A;; + Aii + PSI ( i ,  X, THETAi) ;  

2) If C leaves S1 and terminates an idle 

period of S, then Amj t A;j, 

for j = 1, . . . , I(; (If there is a chain of blocking 

then continue this procedure through the chain) 

3. Test: If Send has completed N parts go to OUTPUT 

else goto UPDATE ; 

4. Output: Let T be the total time since the start of the experiment; 

The IPA estimates of the I( gradients d~/dO,  

( j = l ,  ..., I<) are-(N/T2)Aendj ( j = l ,  ..., I ( ) .  



Extensions of IPA 

In some cases, the IPA tecl~niquc discussed above will fail to work. One instance might be due 

to the assumption that small changes in the system parameter 8 will not cause coalescing of 

busy periods in a GI/G/ l  queue because of small A0. Suppose that the performance measure 

of interest is the average number of messages sent between idle periods of a comnlunicatio~l 

link. If we model the link as a single server queue, this performance measure is the average 

number of customers served in a busy period (BP). Denoting this average by P(O), then a 

simple experimental estimate for P ( 0 )  would be to observe M BPS and then let 

where n, is the number of customers served in BPm. Considering the arguments pre- 

sented in the IPA, we can see that IPA is based entirely on the assumption that no BPS 

will coalesce. If we make A0 small enough so that no BPS coalesce, then each nm value 

will remain the same, so that there will be 110 change in the estimate of the performance 

measure. Thus, the IPA estimate of sensitivity will be zero ! It is clear that this is wrong 

and thus IPA failed in this example. IPA ignores the cffects of some events in the systcm, 

when the probability of occurrence of these events, multiplied by the effect of the events 

on the performance is significant, IPA fails. This motivates some extensions which enable 

gradient estimation for a wider class of systems. 

5.1 Smoothed Perturbation Analysis (SPA) 

Motivated by the failure of IPA to work for the simple case above, the idea of using condi- 

tional probabilities was introduced to develop an extension for the IPA. A conditioning vari- 

able can be used to dccompose the gradient estimate expectation expression. Thc fact that 

more information is used in developing the conditional probability counts for the "smoother" 



kind of performance measure estimate curve that  is obtainable by using this method. For 

example, we can ask the question, for a given AO, what is the expected change in the value 

of n;, based on the observed BP,. 

5.2 Extended Perturbation Analysis (EPA) 

For systems tha t  can be represented by markov chains, a new approach that  may overcome 

the potential inconsistency of IPA can be applied. T h e  idea behind the extended perturbation 

analysis is the fact that the perturbed and unperturbed systems should be st,atistically 

evolving similarly once they enter a, colnilloll state .r, due to their ina.rlio\iian propertj.. 'This 

method works by choosiilg a finite A0 and predicting, from the nominal path, where the 

perturbed pa.th would 11a.ve bra.1lchec1 to a, different sta.te, say y, ~vhile the nomina.l pa.th 

continues in, sa.y, s ta te  x. Up to this point, an  IPA-like estimator is used to compute the 

effects of perturl~a~tion, but  a,t this point, the computa.tion is "frozen". T h e  a,lgori thm then 

waits for the system to  enter state y during the nomina.1 path, then EP.4 restarts. When an 

event order change occurs, the state sequences of the noininal path (NP) and the perturbed 

path (PP) may or may not start  t,o differ depending on whether some discontinuous change 

is involved (e.g., a job originally going to server A mav now go t o  server B). As shown in the 

figure below, if wl and wz are two state sequences of a Markov DEDS and the state sequence 

jumps on from S ,  on wl to S, on u2 inst.ea.d of Sh on d l ,  suhsecluent perturha.tions in\:olving 

state changes may cause further devia,tions so that a perturbed pa.tl1 could be ma.cle u p  from 

segments of s ta te  sequences from wl? u2 ,..., uj , .  .. 

We can see right way that  EPA cannot be as efficient as IPA, since it may remain "inac- 

tive" for significant sections of the nominal experiment. However, there are two factors that  

make its performance bet,t,er tha.n one might expect,. The  first is tha.t in most applica.tions 

we do the gradient estimation wit11 respect to a number of para,meters simultaneously, it will 

probably turn out that several of the gra.dient computa,tions are "active", on average, during 



the observations and the sa.vings is still better compared to mu1 tiple experimentation. Thc 

second is that from a practical point of view, one can often aggregate the states of the system 

to fewer subsets, and use the aggregate state to decide whether to activate or deactivate the 

EPA calculation. Not only does this keep the computation active for longer segments of thc 

experiment, but it also enables EPA to be applied to non-Markovian systems. 

9: ~ e ~ ~ n , ~ D ' ~ u p ~ t ~ ~ o ~ ~ m , ~ g ~ ~ z z ~ d ~ ~ ] ~ ~ ~ ~ ~ ~ ~ ~ m m ~ a a ~ e e ~ S s s o o ~ P ' s ~ s ~ S a ~  

Fig. 4. State sequences of a Markov DEDS. 

-- - - - - -+ Actual perturbed path (PP) 
5 Nominal path (NP) . . . Constructed perturbed path (CPP) 

u-*G-.* 

5.3 Other Perturbation Techniques 

Another Perturbation technique is finite perturbation analysis (FPA), this technique was 

introduced to overcome the IPA assumption that events do not change order. However, FPA 

considers changes in order of events to a pre-specificd limit, for example, it may consider 

only "first order" changes, that is, changes in the order of adjacent events, and ignores any 

effects of changes in order beyond adjacent events. The way it works then is to introducc 

perturbations and propagate them while observing the nominal path, but limiting its calcu- 

la-tions by only extra.pola.ting to predict the effect of such changes in order. Origillally FPA 

was heuristic and experimental in nature, however, recent research has been performed to 

provide more theoretical foundations for it. 



Other techniqucs to make IPA work include changing the system parameter under con- 

sideration to transform problems into "easier" versions, or to versions that have already bcen 

solved. Using a different representation for the system sometime helps in performing IPA. 

Research Issues and Future Work 

Many problems regarding discrcte event dynamic systems in general, and perturbation anal- 

ysis as an cvaluation technique remains opcn. For example, performing PA for a discrcte 

parameter 0 is one such interesting problem. In practical systems, many paramcters (such 

as buffer sizcs, or number of servers a t  a station) are discrete in nature. It should bc noticccl 

that IPA, by its nature can be applied only to continuous parametcrs. Understanding and 

expanding the domain of IPA necds to be addrcssed, in fact, to "automate" the process of 

generating algorithms to calculate the scnsitivity of a performance measure remains an open 

problem. To be able to construct a preprocessing stage, whcre its inputs are the system 

specification and the performance measurc and parameters of interest, and the output as 

an IPA algorithm to bc run while the nominal experiment is periormcd, is one challenging 

problem for researchers. Morc work still rcmains to be done on developing eficicncy and 

accuracy measures for the PA output. Trying to get the "maximum" amount of information 

froin a sample path is anothcr long-tcrm goal. 
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