A Dynamic Recursive Structure for Intelligent Exploration

Tarek M. Sobh, Mohamed Dekhil, Chris Jaynes, and Thomas C. Henderson®
UUCS-92-036

Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

October 26, 1992

Abstract

We suggest a new approach for inspection and reverse engineering applications. In par-
ticular, we investigate the use of discrete event dynamic systems (DEDS) to guide and
control the active exploration and sensing of mechanical parts for industrial inspection and
reverse engineering. We introduce dynamic recursive finite state machines (DRFSM) as a
new DEDS tool for utilizing the recursive nature of the mechanical parts under consideration.

The proposed framework uses DRIFSM DEDS for constructing an observer for exploration
and inspection purposes.

1This work was supported in part by DARPA grant N00014-91-J-4123 and NSF grant CDA 9024721. All

opinions, findings, conclusions or recommendations expressed in this document are those of the author and
do not necessarily reflect the views of the sponsoring agencies.



1 Introduction

Developing environments for inspection and reverse engineering applications is an essential activity in many
engineering disciplines. Usually, too much time is spent in designing hardware and software environments,
in order to be able to attack a specific problem.

One of the purposes of this work is to provide a basis for solving a class of inspection and reverse
engineering problems. The technique to be explored can hopefully be used for a variety of applications. We
use an observer agent to sense the current world environment and make some measurements, then supply
relevant information to a control module that will be able to make some design choices that will later
affect manufacturing and/or inspection activities. This involves both autonomous and semi-autonomous
sensing. _

We use a recursive dynamic strategy for exploring machine parts. A discrete event dynamic system
(DEDS) framework is designed for modeling and structuring the sensing and control problems. Next,
we discuss the objectives and research questions, then we discuss the DEDS and recursive attomata
approaches. We conclude by detailing the visual processing involved and some results.

2 Objectives and Questions

The objective of this research project is to explore the basis for a consistent software and hardware envi-
ronment, and a flexible system that is capable of performing a variety of inspection and reverse engineering
activities. In particular, we will concentrate on the adaptive automatic extraction of some properties of the
world to be sensed and on the subsequent use of the sensed data for producing reliable descriptions of the
sensed environments for manufacturing and/or description refinement purposes. We use an observer agent
with some sensing capabilities (vision and touch) to actively gather data (measurements) of mechanical
parts.
Our thesis is that :

¢ Discrete Event Dynamical Systems (DEDS) provide the base for defining consistent and adaptive
control structures for the inspection and reverse engineering problem.

If this is true, then we will be able to answer the following questions :

What is a suitable algorithm to coordinate sensing, inspection, design and manufacturing ?

What is a suitable control strategy for sensing the mechanical part ?

Which parts should be implemented in hardware vs. software ?

e What are suitable language tools for constructing a reverse engineering and/or inspection strategy ?

We describe DEDS in more detail later, but they can be simply described as :

Dynamic systems (typically asynchronous) in which state transitions are triggered by dis-
crete events in the system.



It is possible to control and observe hybrid systems (systems that involve continuous, discrete and symbolic
parameters) under uncertainty using DEDS formulations [11,13].

The applications of this work are numerous : e.g., automatic inspection of mechanical or electronic
components and reproduction of mechanical parts. Moreover, the experience gained in performing this
research will allow us to study the subdivision of the solution into reliable, reversible, and an easy-to-modify
software and hardware environments.

3 Methodology for Inspection

In this section we describe the solution methodology and discuss the components separately. The control
flow is also described and the methods, specific equipment and procedures to be designed and implemented
are also discussed in detail.

We use a vision sensor (B/W CCD camera) and a coordinate measuring machine (CMM) with the
necessary software interfaces to a Sun Sparcstation as the sensing devices. The object is to inspected by
the co-operation of the observer camera and the probing CMM, a DEDS is used as the high-level framework
for exploring the mechanical part. Dynamic recursive finite state machines (DRFSM) are used to exploit
the recursive nature of the parts under consideration. We next discuss DEDS in general and the recursive
DRFSM implementation of DEDS, then we proceed to apply the framework for the inspection process.

3.1 Discrete Event Dynamic Systems

Discrete event dynamic systems are dynamic systems (typically asynchronous) in which state transitions

are triggered by the occurrence of discrete events in the system. DEDS are usually modeled by finite

state automata with partially observable events together with a mechanism for enabling and disabling a

subset of state transitions [2,10,11]. We propose that this model is a suitable framework for many reverse

engineering tasks. In particular, we use the model as a high-level structuring technique for our system.
We can represent a DEDS by the following quadruple:

G=(X,3,UT)

where X is the finite set of states, ¥ is the finite set of possible events, U is the set of admissible control
inputs consisting of a specified collection of subsets of X, corresponding to the choices of sets of controllable
events that can be enabled and I' C X is the set of observable events.

We can visualize the concept of DEDS by means of the example in Figure 1. The graphical representa-
tion is quite similar to a classical finite automaton. Here, circles denote states, and events are represented
by arcs. The first symbol in each arc label denotes the event, while the symbol following “/” denotes the
corresponding output (if the event is observable). Finally, we mark the controllable events by “:u”. Thus,
in this example, X = {0,1,2,3}, %X = {¢, 3,6}, = {e, 6}, and § is controllable at state 3 but not at state
1.

An alive state is a state that can never undergo transitions leading to a state that has no outgoing
transitions (a dead state). A system A is alive if all its states are alive. Stability can be defined with respect
to the states of a DEDS automaton. Assuming that we have identified the set of “good” states, E, that
we would like our DEDS to “stay within” or to not stay outside for an infinite time, then stabilizability
can be formally defined as follows:



!/ d/9d 2

o/ o

~__ B
0 ) (3
B d:u/d

Figure 1: A Simple DEDS Example

Given a live system A and some E C X, z € X is stabilizable with respect to FE (or E-stabilizable)
if there exists a combination of controllable events (control pattern) K such that z is alive and does not
stay outside E forever (E-stable) when K is used. A set of states, @, is a stabilizable set if there exists a
control pattern K so that every z € Q is alive and stable in Ax (A under the control pattern K), and 4
is a stabilizable system if X is a stabilizable set.

A DEDS is termed observable if we can use any sequence of observable events to determine the current
state exactly at intermittent points in time separated by a bounded number of events. More formally, take
any sufficiently long string, s, that can be generated from any initial state . For any observable system,
we can then find a prefix p of s such that p takes = to a unique state y and the length of the remaining
suffix is bounded by some integer n,. Also, for any other string ¢, from some initial state z', such that t
has the same output string as p, we require that ¢ takes 2 to the same, unique state y.

The basic idea behind strong output stabilizability is that we will know that the system is in state
E iff the observer state is a subset of E. The compensator should then force the observer to a state
corresponding to a subset of E at intervals of at most a finite integer ¢ of observable transitions. If Z is
the set of states of the observer, then : A is strongly output FE-stabilizable if there exists a state feedback
K for the observer O such that Ok is stable with respect to Eo = {€ € Z | & C E}.

We advocate an approach in which a stabilizable semi-autonomous visual sensing interface would be
capable of making decisions about the state of the observed machine part and the probe. Thus providing
both symbolic and parametric descriptions to the reverse engineering and/or inspection control module.
The DEDS-based active sensing interface will be discussed in the following section.

Modeling and Constructing an Observer

The tasks that the autonomous observer system executes can be modeled efficiently within a DEDS frame-
work. We use the DEDS model as a high level structuring technique to preserve and make use of the



information we know about the way in which a mechanical part should be explored. The state and event
description is associated with different visual cues, for example; appearance of objects, specific 3-D move-
ments and structures, interaction between the touching probe and part, and occlusions. A DEDS observer
serves as an intelligent sensing module that utilizes existing information about the tasks and the environ-
ment to make informed tracking and correction movements and autonomous decisions regarding the state
of the system.

In order to know the current state of the exploration process we need to observe the sequence of events
occurring in the system and make decisions regarding the state of the automaton. State ambiguities are
allowed to occur, however, they are required to be resolvable after a bounded interval of events. The
goal will be to make the system a strongly output stabilizable one and/or construct an observer to satisfy
specific task-oriented visual requirements. Many 2-D visual cues for estimating 3-D world behavior can be
used. Examples include; image motion, shadows, color and boundary information. The uncertainty in the
sensor acquisition procedure and in the image processing mechanisms should be taken into consideration
to compute the world uncertainty.

Foveal and peripheral vision strategies could be used for the autonomous “focusing” on relevant aspects
of the scene. Pyramid vision approaches and logarithmic sensors could be used to reduce the dimensionality
and computational complexity for the scene under consideration.

Error States and Sequences

We can utilize the observer framework for recognizing error states and sequences. The idea behind this
recognition task is to be able to report on wvisually incorrect sequences. In particular, if there is a pre-
determined observer model of a particular inspection task under observation, then it would be useful to
determine if something goes wrong with the exploration actions. The goal of this reporting procedure is
to alert the an operator or autonomously supply feedback to the inspecting robot so that it could correct
its actions. An example of errors in inspection is unexpected occlusions between the observer camera and
the inspection environment, or probing the part in a manner that might break the probe. The correct
sequences of automata state transitions can be formulated as the set of strings that are acceptable by the
observer automaton. This set of strings represents precisely the language describing all possible visual task
evolution steps.

Hierarchical Representation

Figure 2 shows a hierarchy of three submodels. Motives behind establishing hierarchies in the DEDS
modeling of different exploration tasks includes reducing the search space of the observer and exhibiting
modularity in the controller design. This is done through the designer, who subdivides the task space
of the exploring robot into separate submodels that are inherently independent. Key events cause the
transfer of the observer control to new submodels within the hierarchical description. Transfer of control
through the observer hierarchy of models allows coarse to fine shift of attention in recovering events and
asserting state transitions.



™~

—

T3

Figure 2: A Hierarchy of Tasks.

Mapping Module

The object of having a mapping module is to dispense with the need for the manual design of DEDS
automaton for various platform tasks. In particular, we would like to have an off line module which is to
be supplied with some symbolic description of the task under observation and whose output would be the
code for a DEDS automata that is to be executed as the observer agent. A graphical representation of
the mapping module is shown in Figure 3. The problem reduces to figuring out what is an appropriate
form for the task description. The error state paradigm motivated regarding this problem as the inverse
problem of determining acceptable languages for a specific DEDS observer automaton. In particular, we
suggest a skeleton for the mapping module that transform a collection of input strings into an automaton
model.

Task Language
' 1
Mapping Module >
J DEDS Automaton
Transition \
Conditions

Figure 3: The Mapping Module.

The idea is to supply the mapping module with a collection of strings that represents possible state
transition sequences. The input highly depends on the task under observation, what is considered as
relevant states and how coarse the automaton should be. The sequences are input by an operator. It should
be obvious that the “Garbage-in-garbage-out” principle holds for the construction process; in particular,





































































