
Visual Observation Under Uncertainty as a Discrete Event Process 

Tarek M. Sobh and Ruzena Bajcsy* 

General Robotics and Active Sensory Perception Laboratory 
University of Pennsylvania 

Philadelphia, PA 19104-6228, U.S.A. 

Abstract 
We address the problem of development and imple- 

mentation of a discrete event dynamic system (DEDS) 
observer for a moving agent. We advocate a model- 
ing approach for the visual system and its observer, 
where the “events” are defined as ranges on param- 
eter svibsets. In particular, the proposed system is 
used for observing a manipulation rocess, where a 
robot hand manipulates an object. be recognize the 
hand/object interaction over time and a stabilizing 
observer is constructed. The resulting robot arm be- 
havior is constructed as a hybrid intelligent mecha- 
nism. The work examines closely the possibilities for 
errors, mistakes and uncertainties in the manipulation 
system, observer construction process and event iden- 
tification mechanisms. Some results from a sequence 
of a peg-in-hole operation are documented. 

1 Introduction 
We discuss a new framework and re resentation for 
the general roblem of observation. T\e system being 
studied can !e considered as a “hybrid” one, due to the 
fact that we need to report on distinct and discrete vi- 
sual states that occur in the continuous, asynchronous 
and three-dimensional world, from two-dimensional 
observations that are sampled periodically. In other 
word, the system being observed and reported on con- 
sists of a number of continuous, discrete and symbolic 
parameters that vary over time in a manner that might 
not be “smooth” enough for the observer, due to visual 
obscurities and other perceptual uncertainties. 
The problem of observing a moving agent was ad- 
dressed in the literature extensively. I t  was discussed 
in the work addressing tracking of targets and, deter- 
mination of the optic flow [2,7,10,17], recovering 3-D 
parameters of different kinds of surfaces [6,12,15,16], 
and also in the context of other problems [1,3,8,9]. 
However, the need to recognize, understand and re- 
port on different visual steps within a dynamic task 
was not sufficiently addressed. In particular, there is 
a need for high-level symbolic interpretations of the 
actions of an agent that attaches meaning to the 3- 
D world events, as opposed to simple recovery of 3-D 
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parameters and the consequent tracking movements to 
compensate their variation over time. In this work we 
establish a framework for the general problem of ob- 
servation, recognition and understanding of dynamic 
visual systems, which may be applied to  different kinds 
of visual tasks. 

2 Discrete Event Dynamic Sys- 
tems 

Discrete event dynamic systems (DEDS) are dynamic 
systems (typically asynchronous) in which etate trsn- 
sitions are triggered by the occurrence of discrete 
events in the system. DEDS are usually modeled by 
finite state automata with partial1 observable events 
together with a mechanism for enailing and disabling 
a subset of state transitions [11,13,14]. We can repre- 
sent a DEDS by the following quadruple : 

G = (X, E, U, r) 
where X is the finite set of states, C is the finite set 
of possible events, U is the set of admissible control 
inputs consisting of a specified collection of subsets of 
E, corresponding to the choices of sets of controllable 
events that can be enabled and I’ E C is the set of 
observable events. 

Stabilit can be defined with respect to the states of 
a DEDH automaton. Assuming that we have identi- 
fied the set of “good” states, E, that we would like 
our DEDS to “stay within” or do not stay outside for 
an infinite time, then stabilizability can be formally 
defined as follows : 

Given a live system A and some E C X ,  x E X is 
stabilizable with respect to E ( or E-stabilizable ) if 
there exists a state feedback IC such that x is alive and 
E-stable in A K .  A set of states, Q, is a stabilizable set 
if there exists a feedback law K s) (a control pattern 

is a stabilizable system if X is a stabilizable set. 

A DEDS is termed observable if we can use the obser- 
vation sequence to determine the current state exactly 
at intermittent points in time separated by a bounded 
number of events. The basic idea behind strong out- 
put stabilizability is that we will know that the system 
is in state E iff the observer state is a subset of E.  The 
compensator should then force the observer to a state 
corresponding to a subset of E at intervals of at most 
a finite integer i observable transitions. 

so that every x E Q is alive an d stable in A K ,  and d 
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3 Modeling and Observer Con- 
struction 

Manipulation actions can be modeled efficiently within 
a discrete event dynamic s stem framework. We use 
the DEDS model as a high revel structuring technique 
to preserve and make use of the information we know 
about the way in which each manipulation task should 
be performed. The goal will be to make the observer 
system a strongly output stabilizable one. 

We use the image motion to estimate the hand move- 
ment. This task can be accomplished by either feature 
tracking or by computing the full optic flow. The im- 
age flow detection technique we use is based on the 
sum-of-squared-differences optic flow. The sensor ac- 
quisition procedure (grabbing ima es) and uncertainty 
in image processin mechanisms for determining fea- 
tures are factors t i a t  should be taken into consider- 
ation when we compute the uncertainty in the optic 
flow. 

One can model an arbitrary 3-D motion in terms of 
stationary-scene/moving-viewer. The optical flow at 
the ima e plane can be related to the 3-D world using 
a pair of non-linear equations for each point (z, y) in 
the image plane [12] In this system of equations, the 
only knowns are the 2-D image flow vectors v, and 
uy, if we use the formulation with uncertainty then 
basically the 2-D vectors are random variables with 
a known probability distribution. A number of tech- 
niques can be used to linearize the system of equations 
and to solve for the motion and structure parameters 
as random variables [4,5,15]. 

4 Modeling and Recovering 3- 
D Uncertainties 

The uncertainty in the recovered image flow values re- 
sults from sensor uncertainties and noise and from the 
image processing techniques used to extract and track 
features. We use a static camera calibration technique 
to model the uncertainty in 3-D to 2-D feature loca- 
tions. The strategy used to find the 2-D uncertainty in 
the features 2-D representation is to utilize the recov- 
ered camera parameters and the 3-D world coordinates 
(cw , yw , z w )  of a known set of points and compute the 
correspondin pixel coordinates, for points distributed 
throughout t i e  image plane a number of times, find 
the actual feature pixel coordinates and construct 2-D 
histo rams for the displacements from the recovered 
coorckates for the experiments performed. The num- 
ber of the experiments givin a certain displacement 
error would be the z axis of &is histogram, while the 
c and y axis are the displacement error. The three 
dimensional histogram functions are then normalized 
such that the volume under the histogram is equal to 
1 unit volume and the resulting normalized function 
is used as the distribution of pixel displacement error. 

The spatial uncertainty in the image processing tech- 
nique can be modeled by using synthesized images and 
corrupting them, then applying the feature extraction 

mechanism to both images and computing the result- 
ing spatial histogram for the error in finding features. 
The probability density function for the error in find- 
ing the flow vectors can thus be computed as a spatial 
convolution of the sensor and strategy uncertainties. 
We then eliminate the unrealistic motion estimates by 
using the physical (geometric and mechanical limita- 
tions of the manipulating hand. Assuming t h at fea- 
ture points lie on a planar surface on the hand, then we 
can develop bounds on the coefficients of the motion 
equations, which are second degree functions in x and 
y in three dimensions, vs = fi (x , y) and vy = fi (c, y) . 
The 2-D uncertainties are then used to recover the 3-D 
uncertainties in the motion and structure parameters. 
The system is linearized by either dividing the param- 
eter space into three subspaces for the translational, 
rotational and structure parameters and solving iter- 
atively or using other linearization techniques and/or 
assum tions to solve a linear system of random vari- 
ables fils ,6,15,16,18]. 

5 Conclusions and Results 
State transitions are asserted within the DEDS ob- 
server model according to the probability value of 
the occurrence of an event. Events are thus defined 
as ranges for the different parameters. The problem 
then reduces to computing the corresponding areas 
under the refined distribution curves. An obvious way 
of usin those probability values is to establish some 
threshJd values and assert transitions according to 
those thresholds. I t  might be the case that none of 
the obtained probability values exceeds the set thresh- 
old value and/or all values are very low. In that case, 
there is a good chance that we are at either the wrong 
automata state. The remedy to  such problems can be 
implemented through time proximity, that is, wait for 
a while (which is to be preset) till a strong probability 
value is registered and/or backtrack in the automaton 
model for the observer till a high enough probability 
value is asserted, a fail state is reached or the initial 
ambiguity is asserted. The backtracking strategy can 
be implemented usin a stack-like structure associated 
with each state that fas already been traversed, which 
includes a sorted list of the computed event probabil- 
ities and a father-state variable. 
Experiments were performed to observe the robot 
hand. The low level visual feature acquisition is per- 
formed on the Datacube MaxVideo pipelined video 
processor at frame rate. The observer and manipulat- 
ing robots are both PUhlA 560’s and the Lord exper- 
imental gripper is used as the manipulating hand. A 
peg-in-hole task using the Lord gripper, as seen by the 
observer, is shown in the figure. The observer tends to 
get closer to the peg when it approaches the hole, in 
order to focus on the insertion process. The demon- 
stration sequence screen structure is divided into three 
sections, the right half is the observer and the agent 
environments, the upper left corner is the view from 
the observer camera, while the lower left corner is a 
graphical representation of the state in the DEDS au- 
tomaton. 
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Figure 1 : A Peg-in-Hole Sequence 
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Figure 1 : A Peg-in-Hole Sequence 
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