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Abstract-This paper addresses the kinematic synthesis of 
robotic manipulators and presents a simple prototyping software 
tool. The tool, which runs under the Mnthemniicn environment, 
automatically computes passible optimal parameters of robot 
arms by applying numerical optimization techniques to the 
manipulability function, combined with distances to the targets 
and restrictions on the dimensions of the robot. This work also 
discusses possible extensions of the proposed method of 
kinematic synthesis. 

Index Termc-eomputer aided design, kinematic synthesis, 
manipulability, optimization. 

I. INTRODUCTION 

omputing optimal geometry for robotic manipulators is C one of the most intricate problems in contemporary 
kinematics. Mathematical equations that describe the behavior 
of kinematic chains are nonlinear, ofien contain thousands, 
sometimes even millions, of terms, and rarely have known 
closed-form solutions. Most of the existing analytical 
conclusions rely on rigorous analysis of some particular 
manipulator configurations, whereas attempts to generalize 
methods of kinematic synthesis usually end up in the domain 
of numerical analysis. The complexity of the optimal design 
problem remains a catalyst for the development of rapid 
prototyping, which allows engineers to determine structural 
flaws of the mechanisms by examining the behavior of their 
prototypes, as opposed to analyzing sophisticated 
mathematical models. Modem synthesis methods include 
minimization of cost functions [I], stochastic algorithms [2] ,  
distributed optimization [3], parameters space approach [4], 
and some other techniques [5]. This work concentrates on a 
popular algorithm for numerical optimization: minimizing 
functions with the steepest descent method. 

A classical way of solving an optimization problem is to 
select several criteria that describe important aspects of the 
model, assign weight factors to them and then find minima of 
the cosrfincrion, which is often the sum of the weighted 
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criteria. Minima are located by examining the gradient of the 
function - the algorithm is known as the steepest descent 
method. In this project, instead of taking into account 
individual. kinematic parameters, the cost function was 
composed from the expression for the manipulability measure 
and distances to the target points. A procedural package for 
Muthemarica (v, 4.1, Wolfram Research Inc. 2002) has been 
developed to test the new method of kinematic synthesis. The 
software uses a set of task-points, several weight factors, and 
produces a table of Denavit-Hartenherg parameters [6] 
describing a manipulator that attains high manipulability at 
each of the targets. The program actuates the Robotica 
package (v. 3.60, Copyright 1993 Board of Trustees, 
University of Illinois) to display the results and employs a 
simple manipulability measure first defined by Yoshikawa in 
1983 [7]. The framework can be extended to encompass more 
complicated and accurate models. 

11. MANIPULABILITY MEASURES 

In order to analyze the efficiency of robots, one needs some 
quantitative measure of their performance. The theory of 
kinematic synthesis has significantly advanced during the past 
decade and various ways have been developed to describe the 
manipulability and dexterity of robots. Many of these 
approaches were derived from the definition of manipulability 
proposed by Yoshikawa 171. Given a manipulator with N 
degrees of freedom, denote joint variables by an N- 
dimensional vector q. Let J(q)  he the velocity jacobian of the 
manipulator. When J(q) loses its full rank, the kinematic chain 
loses one of its degrees of freedom; hence, manipulability is 
defined as: 

w = J m  ( 1 )  

w = ldet J(q)l ( 2 )  
For non-redundant manipulators this expression reduces to 

By applying the singular value decomposition to the 

jacobian: J(q) = U 2  k' [8] it can he shown that W is 
proportional to the volume of the ellipsoid with principals 
a x e s o , u , , 0 2 u 2  ,..., o,u,<, where s =maxrankJ(q), 
G~ are singular values of J(q), and U, is the i- th column 

vector of U. When J loses rank the ellipsoid becomes 
degenerafe, i.e. one or more of its principal axes have zero 
length. 

T 
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During the past few years the manipulability ellipsoid 
approach has acquired significant enhancements. A number of 
manipulability measures for parallel mechanisms [9] have 
been derived; these equations included constraints on joint 
velocities and forces. J. Lee has developed a method of 
manipulability polytopes [lo], which is more involute then the 
ellipsoid approach, but provides a better assessment of the 
mechanism's efficiency. 

111. NUMERICAL OPTIMIZATION 
All of the previous manipulability measures involve lengthy 

nonlinear mathematical expressions in many variables. 
Contemporary mathematics does not possess generic 
techniques for obtaining closed-form solutions to nonlinear 
equations, and iterative methods still retain a firm position 
among the tools for solving complicated systems. Classical 
optimization usually refers to combining several criteria 
expressions into a single multivariable function, called the 
costfiioctinn, and then iteratively searching for solutions that 
minimize that function for a particular domain. The steepest 
descent algorithm finds minima by always walking in the 
direction opposite to gradient of the function. This procedure 
is slow, if compared to locally convergent techniques such as 
Newton-Raphson method, for instance; however, steepest 
descent does not require the initial guess to be close to the 
actual solution. If the range of the function does not contain 
negative values then the algorithm always converges, with the 
exception of some rare cases when the gradient vanishes - 
then the result may appear to be a maximum or a saddle point. 

If x is the solution vector, then choose n criteria 
x.(X) = 0, i = 1,2 ... n ,  and build the function for 

oDtimization: 
(3) 

The expression (3) is then minimized and if the discovered 
minimum lies close to 0 then the result yields a good 
approximation to the optimal value of X, provided that such 
optimum exists. 

This method has certain disadvantages: for instance, some 
criteria may be discontinuous, or may involve complex 
numbers; also there is no way to determine whether the 
encountered minimum is local or absolute. Nevertheless, the 
steepest descent procedure, if carefully applied, provides a 
reliable method to quickly design kinematic chains, and the 
obtained results can always become initial approximations for 
other design techniques. 

Iv. CONSTRUCTING THE OPTIMIZATION MEASURE 
The goal of the project was to develop a fast and simple 

synthesis tool for robotic manipulators. The objectives were: 
Generality 
Fast results 
Easeofuse 

It was intended that a designer would enter several spatial 

points into a computational module, and within a reasonable 
amount of time receive a description of a robot that would be 
able to efficiently operate among the given targets. The 
synthesis algorithm was based on the manipulability measure, 
described by equations ( I )  and (2), and the steepest descent 
method. 

Suppose there are M task-points: pl. p2, p ,  ..., pm. Let K be 
the set of constant parameters in the definition-of the robot, 
i.e. all Denavit-Hartenberg parameters with the exception of 
the joint variables. Let q be the joint vector and w(K,q) - 

the manipulability hnction of the robot described by K and 
joint variables q. Finally, let D(K,q,pi) be the distance 

between the point p, and the origin of the end-frame of the 
robot, whose form and position are given by K and q 
respectively. The task i s  to find an optimal K, such that all of 
the given points fall within the reachable workspace and M' has 
high values at each of the targets. 

The first version of the cost function considered, was: 

As F, decreases, the manipulability grows, and the distance 
to the target decreases. The absolute value function around w 
is difficult to work with, and D contains a square root: 

,/x: + x; +... (here x, are the components of the residual 

vector), which only increases the complexity of the 
expression. So, (4) was transformed into: 

After minimization, q becomes the inverse kinematic 
solution for the point p i  and K describes a robot that attains 
high manipulability at that point. If during the optimization 
phase the algorithm encounters a singular jacobian, the value 
of F becomes infinite, therefore an extra term b is needed to 
eliminate the singularities. 

b is typically very small so that it does not distort the 
results, e.g. IO-''. 

Initially it was intended to solve the problem for each of the 
target-vectors individually and then use heuristics to merge 
the solutions into a single parameter table. Yet, combining 
results usually implies some form of averaging, which carries 
a negative aspect: when trying to merge very large and very 
small values of a particular parameter, say, a link length, the 
outcome is smaller than the larger value; hence some targets 
may become unreachable. Averaging works only when task- 
points lie on, or near some sphere centered at the origin, but if 
targets are arbitrarily distributed in space, this approach 
becomes unacceptable. 

Instead of computing a separate solution for each of the 
targets, it was proposed to treat the point-set as a single object 
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in 3-space. All manipulability functions and distances were 
combined into a single expression for optimization. The joint 
variables have unique values at every task-point, so the joint 
vector q was made different for each pair 
{manipulabiliry_atqoin~-i, distance-togoint-i}. For 
example, if the first angle parameter is variable then at point 
pl it is called 0 ~ ~ , 1 ~ ,  at the second point: OpI], and so on. So for 
each of the nl points there is a separate joint vector q,. Now, 
writing w(K,q,) and D(K,q,,pi) as W, and Di 
respectively, one can reformulate (6) as follows: 

It was discovered that expression (7) sometimes resulted in 
poor precision: i.e. the positioning error for some targets 
could go up to the order of 10.'. So a weight factor & was 
attached to the distance D: 

By increasing E one can increase the precision of the 
manipulator. 
. Another issue was that (7) and (8 )  always produced very 

large arms, often several times longer than the distance to the 
remotest target. Therefore it was decided to introduce another 
term { x L :  

(9) 

I 
d,w 

Here a, and d,, are the length and offset Denavit- 

Hartenherg parameters respectively; the restriction d, E q 
ensures that only invariant offsets are included. { is the size 

dumping factor: values of order higher than lo-' notably 
reduce the dimensions of the manipulator; however, they also 
decrease manipulability, because the available workspace 
shrinks. The final expression for optimization is: 

F(K,q, ,q, , . . . ,qm) = (10) 

V. A SIMPLE DESIGN TOOL 
A set of procedures for Mathematica (v. 4.1) have been 

written to automate the kinematic synthesis of robot arms. 

The source code, along with instructions, can'. he 

http://www.hridgeportt.edu/-sobh/ieeeram2OO2.html 

A sample run of the program is shown on Fig.'I (a, h). The 

downloaded from 

software uses the traditional manipulability ellipsoid measures 
( I )  and (2). Detailed descriptions of available procedures and 
their parameters can be found in the program itself. This 
section will focus only on the main module that triggers the 
optimization: 

DesignRobot[task-points, configuration, 
precision, size-dump, fi-le-name] 

The first argument is the set of 3-dimensional task-points. 
Th is  is the only mandatory argument: the rest have default 
values, and are optional. 
Configuration is a non-empty string of 'Rs and 'P' 

denoting rotational and prismatic joints respectively. Thus 
"RRR' stands for an articulated manipulator, "RPP" for 
cylindrical, etc. 
Precision and size-dump are weights that increase 

precision and limit dimensions of the robot respectively. See 
equations (9) and (10). 
file name is the name of the file where the description 

of the robot will he stored. The information is saved in the 
format defined in [I I]. 

Configuration parameter can he a positive integer, 
then it is treated as the number of degrees of freedom, and the 
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h' program tries all possible 2 configurations. For example, for 
a 3-link arm those are (PPP, PPR, PRP, RPP, PRR, RPR, 
RRP, RRR}. For each combination the procedure computes 
the average volume of the manipulability ellipsoids over the 
set of task-points. The geometry that yields the highest 
average manipulability gets selected. This heuristics normally 
chooses the articulated configuration; however, if the size- 
dumping factor is large then other outcomes may be possible. 
This feature also provides an overview of the average values 
of manipulability ellipsoids over the range of manipulator 
configurations. 



Tssk P0mt.s 
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4 -1 .5  -4.1 - 2 . 9  1 

/j 5 0.6 3. -2 11- I 
, .  I 

Trying COnfiwr8Sion: RRP ] i:, . .  
1 

.......................... 3 :,.':' 

3 :. I 

1812012002 - 21:42:21] Optmizing.:. 3 I.'; , .  
Opclmlratlon Ume: 107.003Sec0nd 

Local minimum - 0,0521673 
Average e l l i p s o i d  volume: 14.9178 

Fig. I-A. Mathematica environment executing the program. 

Fig I-B hlorhemarrca environment executing the program ( a n t )  

Construction of the cost function requires generic symbolic 
expressions for the transformation and jacobian matrices. The 
linear transformations are always the same, whereas jacobians 
vary depending upon the manipulator configuration (Cartesian, 
spherical, articulated, etc). It does not take much time for a 
computer to calculate those matrices; however, their 

simplification is extremely time consuming and for redundant 
manipulators may take a few hours. Nevertheless, since the 
matrices are completely generic, they need to he derived only 
once. After the very first computation the expressions are 
saved and are reloaded for subsequent operations. 

VI. RESULTS 

This section contains results of a sample program run. It 
presents a parametric trajectoly and demonstrates what 
happens when a number of points that belong to the cuwe are 
submitted to the optimization module. 

More case studies are available at: 
http://www.hridgeportt.edu/-sobh/ieeeram2OO2.html 

The goal was to design an articulated arm with slightly 
increased precision and limited dimensions; the software was 
forced to select rotational joints, hut was not allowed to 
enlarge links in order to raise the manipulability. The 
trajectory is depicted on Fig. 2, some manipulability ellipsoids 
on Fig. 3 (a, b), and a prototype of the robot on Fig. 4. 

Configuration: RRR (selected by the user). 
Precision: 25 
Size dumping: 12 
Average Ellipsoid Volume: 1.451 
Smallest Ellipsoid Volume: 0.81001 
DH-Tahle 

1.56376 

i x '\ 

X 

Fig. 2. Trajectory for Sample 2; total: 63 points. Parametric representation: 
{x=con(Sl),y=sin (30, ;=sin(t)); t ranges from 0 to 277 with the steu of 0.1 
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Fig. 3-A. Manipulability ellipsoid. Target: ( I ,  0. 0). Joint vector: 
(ql-10.0001335, q 2 4 5 7 5 6  (mod 2n), q3-1-2.72491. Residual position: (. 
0.019091. -0,00063247, 0.0053021). Ellipsoid volume: 0.97052 

Figure 3-0. Manipulabilily ellipsoid. Target: (0.28366, 0.14112, 0.84147). 
Joint vector: (ql-16.7515, q2-12.7115, q3-12.14). Residual position: 
(0.094132,0.047255, O.Ol5007). Ellipsoid volume: 0.86919 

Fig. 4. Prototype o f  the robot designed by the program Several positioning 
targets are indicated by the tips ofthe pyramids. Unit of length = 1' 
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VII. FUTURE DEVELOPMENTS IEEE Inrernational Symposium on lnduslriol Eleclronics '01, 2001. p. 
1747-52. 

Substituting different symbols in place ofjoint variables for [IO] L. Jihong. "A study an the manipulability mezures for robot 
each of the task-ooints ereatlv increases the number of manipulators," in Prooc. IEEE lnlernallonol Conference on Inleiligenl - ,  

Robot3 wdSystems '97, 1997, p. 1458-65. unknowns to compute. If, instead of using distinct parameters, [ I  I ]  M. W. Spong, "The Robotica Manual." [online] 1993 [downloaded 21 
one could introduce functional relations connecting the joint Dec. 20011. Available 
vectors, then the number of variables will decrease. The 
presented design model can easily incorporate additional 
constraints and weights, or even make use of a more elaborate 
manipulability measure. 

http:llrobotO.ge.uiuc.ed~-spongiRobotic~newman.ps.Z 

VIII. CONCLUSION * 

A new numerical technique for synthesizing manipulators 
from workspace restrictions has been developed. The design 
procedure utilizes the classical method of numerical 
optimization based on the steepest descent algorithm. A 
software package that automatically derives possible optimal 
parameters for robot arms from sets of task-points has been 
written. This tool can significantly aid in robot design and 
prototyping and is another significant step towards the 
automated generation of optimal robotic mechanisms from 
task descriptions. 

APPENDIX 

A. Computer Sofmare 
Mathematica v. 4.1. Wolfram Research Inc, 2002. 

www.wolfram.org 

Robotics v. 3.60 [online] University of Illinois, 1993 
[downloaded 21 Dec. 20011, Available 
http://robotO.ge.uiuc.edu/-spong/Robotic~robotica,m 

B. Resources 
The Mathematica source code for the program and 

additional case studies are available at 
www .bridgeport.edu/-sobh/ieeeram2002.html 
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