
Session F4F

CourseScheduler

Tarek M. Sobh & Rik Cousens ’
Abstract-A typical problem in an academic environment

is trying to find the best set of courses to offer students in
a given semester, taking into consideration which courses are
needed by students, and the availability of instructors capable
of teaching those classes.

The optimal solution is to offer all courses that will allow
all students to graduate in the minimum number of semesters.
This allows students to finish their course-work quickly so that
they can enter the work-force and earn a living.

The job of determining which courses to schedule (usu-
ally done by a department chairperson) requires informa-
tion about the student-body needs and information about in-
structor availability/capability. The most dificult part of this
process is to determine which instructors should teach which
courses, and in which time-slots they should teach them, and
still be able to satisfL all of the students.

Selection of instructors is determined by the fact that an in-
structor knows the course material and that they are available
to teach a given course. Instructors may have preferences as
to what time of day they teach, or on which days of the week
they would like to instruct the courses for which they are re-
sponsible. An instructor may not be available if they are al-
ready teaching too many courses, as defined by the individual
learning-institution.

There are several dificulties in determining when to of-
fer a given course. For example, consider a college Senior
who has taken almost all of the courses required to satisfL
the requirements for hisher degree. Because the student has
nearly satisfied the degree-requirement, the student has a lim-
ited choice of courses that they can take. This is a problem for
the department-chairpersons, since they must offer appropri-
ate courses to the student to ensure that they will have enough
credits to graduate.

This document will present a small set of software-
components which will aid department-chairpersons in their
scheduling process.

Introduction
In an institution of higher-education, there are students who

wish to acquire a degree in a given discipline.
A student is a person who wishes to acquire a degree in

a given discipline. By attending lectures, reading textbooks,
and completing projects, the student assimilates the informa-
tion, increasing their knowledge about the discipline. In order
to obtain the degree, the student must take a prescribed set

1 Dept. of Computer Science, University of Bridgeport, Bridgeport, CT
06601

0-7803-6669-7/01/%10.00 02001 IEEE

of courses in order to satisfy the degree-requirements of the
institution.

The information that the student must learn (as dictated by
the learning-institution) is disseminated to the students by an
instructor. The instructor has already learned the information
required by either having learned the course-material in an
educational setting, or acquired it by themselves by having
worked in that field. Furthermore, each instructor is typically
capable of instructing more than one course.

In order to enable students to satisfy their degree-
requirements, a schedule must be defined. A schedule is a
set of courses, each with an instructor to teach it, whose re-
sponsibility it is to disseminate the course-information to the
students.

In order to generate a schedule of classes the Course-
Scheduler application (one of the tools in this project) re-
quires the following information:
1. a data-set of courses needed by the students. Preferably,
this data-set should contain a “tree” of possible ways that
a given student could graduate in the minimum number of
semesters.
2. a data-set of instructors’ abilities. This data-set should in-
dicate which courses a given instructor is capable of teaching
to students.

Luckily, the first criterion for CourseScheduler is available
by using the SKED program [11.

SKED

SKED evaluates courses already taken by students (trans-
ferred from other universities or previously taken at the cur-
rent institution), and determines the “best” courses that the
student can take, given:
1. courses already taken (or transferred) by the student.
2. the prerequisite courses for a given course (a prerequisite
being a course that must be taken before another course, since
the prerequisites give the student “foundation” information
required to understand the concepts presented in the “next”
course).
3. the co-requisite courses (courses that may be taken at the
same time as the given-course, since the information obtained
in the co-requisite is not dependent upon the given-course, but
will be helpful to the student, if learned at the same time).
4. the maximum number of courses allowed by the univer-
sity. This “restriction” exists to make sure that students are not
over-burdened by taking too many classes. This is supposed
to guarantee that students have sufficient time to concentrate
on their homework, lab-work, exams, etc.
5. and last, but not least, the courses required to satisfy the
major for which the student desires a degree (a major being

October 10-13,2001 Reno, NV
31st ASEEIIEEE Frontiers in Education Conference

F4F-9

Session F4F

an area of concentration in which the student is interested.
Universities require a student to take a sufficient number of
courses [credit-hours] in a given discipline so that the student
is conversant with many aspects of the desired major.)
There also exist certain courses that may not be taken by stu-
dents until they have reached a certain “year” (.i.e. freshman,
sophomore, junior, or senior: these terms indicate the number
of credit-hours successfully completed by the student). This
“restriction” exists to protect students from taking courses for
which they may have insufficient “background” information
to complete successfully.

The SKED algorithm calculates a requirement-cost (the
maximum number of prerequisite courses that must be
taken before a given-course) for each course, as well as an
availability-cost (which is the number of prerequisite, CO-

requisites and course-offerings in the next 2 semesters) ’ and
generates a data-file containing a “tree”. This “tree” con-
tains all possible schedules (list of courses in a semester-by-
semester format), describing which courses, taken in which
semester, would allow the student to satisfy the degree-
requirements in the minimum number of semesters.

SKED is written in Microsoft Visual Basic, and uses Mi-
crosoft Access as its data-source.

The CourseScheduler application manipulates the output-
files from SKED and provides a simple infrastructure to solve
an arduous problem:

determining which courses to offer in a given
semester that will allow all students to have at least
one of their “required” schedules (as determined
by SKED) satisfied, given student requirements and
instructor availability.

Trials (and “Errors”) - A.K.A Algorithm-refinement

The initial implementation of this project attempted to use:
1. available instructors to teach the classes.
2. classroom size and availability.
3. time-slots of when classrooms were available and in-
structor availability.
4. students’ preferences as to times courses were taught.

This attempt began with faculty ability/availability in gen-
erating all possible sets of classes for a given semester, and
matching those sets with the student requirements (the dataset
is 20 instructors and 19 data-files of student-requirements
from SKED). It quickly became apparent that this was an NP-
hard problem (a problem requiring an enormous number of
resources and processing time). This version took 2-4 hours
to generate a large number of sets that were not needed by the
student population.

Given the poor performance of this version, it was aban-
doned without even attempting to address the classroom or
student preferences.

lsee the SKED paper, Algorithm section.

0-7803-6669-7/01/%10.00 02001 IEEE

The second attempt tried to generate schedules which
would maximize the number of:
1. students per class.
2. student-preferences satisfied by the schedule.

This scenario would have been ideal, had it worked out. In
this way, we could have maximized the classroom utilization
as well as the instructor utilization. The fundamental prob-
lem persisted: our algorithms didn ’t suficient& address the
students needs.

Attempting to cater to the instructors preferences of when
they wanted to teach courses, or trying to allow the students’
desires on when they would prefer to take the class, did not
work well.

The approach that was finally chosen was the following:
1 . treat the student-requirements as a “set”.
2. assign instructors to courses that “need-to-be-taught” from
the student-requirements.
3. allow instructors to assign a desired time-slot to each of the
courses that they teach.

By using these rules, courses that the student requires in
order to graduate early is an integral part of the scheduling
process, and not left to “chance”. It also allows instructors
some lee-way in determining when they want to teach (i.e.
moming/aftemoon, or weekends).

In the event that an instructor does not have a full class-
load, the department chairperson may have that instructor
teach an elective course.

Algorithms
We found that we needed a special-case for some students:

“Seniors” (a student athear the end of a degree-program) who
have satisfied nearly all of their degree-requirements typically
have only a single course-set that must be followed, in order
to graduate in the least amount of time.

It is these students that seem to cause the task of course-
scheduling to be so difficult.

CourseScheduler - a batch process

The primary algorithm for the course-scheduling process is
to:
1. gather all permutations of student requirements from
SKED-output files. From the resultant information, courses
that exist in all students schedules are gathered and saved. The
usage of this information will be discussed later.
2. gather instructor information - verify that all courses that
are “required” by the students can be offered. There may be
circumstances that.prohibit a course from being offered, such
as an instructor being on sabbatical*.
3. At this point, the system has the following information:

since there exist instructors capable of teaching them.
(a) all courses required by the student-body are possible,

2This presents a significant problem should the “unavailable” instructor in-

October 10-13,2001 Reno, NV
struct a course needed by a student with only a single course-set.

-
31st ASEEIIEEE Frontiers in Education Conference

F4F-10

Session F4F

(b) a set of courses that are common to all students (may be
an empty-set). At the very least, the system knows what the
students require.
4. Assuming that the above steps are successful, the “batch”
process now creates the following data-files to be read by the
scheduling-applets:

(a) course-map - a list of all possible courses required by
the student-body. This file contains the mnemonic names of
the courses (i.e. MATH227, CS102, etc).
(b) default.courses - an “index” file containing the ordinal

number of the courses actually needed by the student-sample.
(c) student .m.map - generated for each student contain-

ing all possible required-schedules for the student. A file is
not generated if one student has the same exact requirements
as another student in the system.
Each of the required-schedules has been “reduced”, or “fact-
ored”. Each line of the file contains the ordinal “index-values”
into coursemap.

The CourseScheduler application does its processing in 4
steps:

1. CourseScheduler makes a special-case for students with
only a single courseset. For those students, all courses that
they require are considered extremely important, since failing
to cater to these specific needs will fail to attain the goal of
minimizing the graduation time for all students.
For those students (if any), a list of “required-courses” is built.
These “required-courses’’ must be taught. Coursescheduler
then removes the “required-courses’’ from all other students.
Then, a unique list of distinct requirements are made from the
course-sets left after the “factoring”. This is done so as to
reduce the number of permutations that must be generated in
Step 2.
2. At this point, CourseScheduler iterates through all stu-
dents with multiple course-sets, generating a list of courses
required by all students. The number of permutations is sig-
nificantly reduced by the “factoring-out” of the “required-
courses” (from 33,000,000 to 600,000, for the current data-
set). Under certain conditions, the complete course-set may
be a duplicate of a course-set previously “calculated”. In this
case, the newly generated course-set is not added to the list of
possible schedules (since it is a duplicate). All unique sched-
ules are written to disk for later evaluation. Given our current
data-set, out of 604,800 permutations of all student require-
ments, only 24 are unique. Each of these 24 schedules must
be evaluated against the courses that our instructors are cap-
able of teaching.
3. CourseScheduler examines the “required-course” set and
the new minimal set of courses required by all students and
verifies that there are available/qualified instructors to teach
each course, or displays an error message. If an instructor
teaches no courses that are “required” by the student-sample,
Coursescheduler displays this fact as well.
4. CourseScheduler now knows which courses must be
taught and which instructors teach them. It then permutes

0-7803-6669-7/01/%10.00 0 2 0 0 1 IEEE

the instructors, and the courses that they can teach (instruc-
tors in the same department can teach the same course). For
example, there is usually more than one instructor within the
Math department that is capable of instructing CS 227 (Dis-
crete Math) (a prerequisite course at University of Bridgeport
for many courses). Depending upon the availability of the in-
structor, and student-requirements, the course may need to be
split into multiple sections. Instructors are limited to a cer-
tain number of courses that they can teach each semester (so
instructors have ‘free” time to prepare exams, attend faculty
meetings, etc.).
The University of Bridgeport allows instructors to teach 3
courses per semester. If a given instructor is “capable” of
teaching only 3 courses that are needed (as determined by
CourseScheduler), no permutation is required. Otherwise,
the number of permutations possible for a given instructor is
defined by the combination formula:

where n is the number of courses for which the instructor is
capable of teaching and is required by the students, and r is the
number of courses-per-semester that an instructor can teach.
So, for example, if an instructor teaches 5 “needed” courses,
but allowed to teach only 3 at a time, we have C(5,3) =
& + + j j 10 distinct combinations.

Once the instructor permutations are complete, a data-file
is written containing all instructors, and the courses that are
needed by the student-body. At this point, individual instruc-
tors or the “adminstrator” must allocate a time-slot to each
course required by the students’ needs.

c w = . * .

IApplet - “Instructor applet”

IApplet allows instructors or an “administrator” to
sethodify when instructors teach the classes that are required.
There is no algorithm behind this applet, per se. It simply
allows an instructor/administrator to maintain time-slot infor-
mation (textual representation of when courses are taught). In
the current implementation, they are simply 2-hour slots. In
a “real” implementation, day-of-week logic should be used.
The file sched.tools.MyComboMode1 contains hard-coded
time-slots, which can easily be changed.

Each instructor is responsible for maintaining their prefer-
ences as to when they wish to teach their courses. Unallocated
(unspecified) time-slots/courses will prohibit valid schedule-
generation.

Once all instructors have indicated their preferences, the
validation-applet may be run by the administrator.

AdmValidatorApplet - “Administrator’s schedule
validation applet”

This applet takes the course permutations (assuming all in-
structors have completed their time-slotkourse selection) and
attempts to generate a list of schedules in which all students
will be able to take at least one permutation of their schedule.

October 10-13,2001 Reno, NV
31st ASEEDEEE Frontiers in Education Conference

F4F-11

Session F4F

The applet permutes the instructor-sets and iterates
through all student-requirements (by re-reading the SKED
output files and cache-files from Step 2 of CS.). A viable
schedule is one for which at least one studentlrequirement
permutation for EVERY SINGLE STUDENT exists for the
given instructor/course/time-slot combination.

So, for the purposes of this project, we’re interested in only
viable solutions. AdmValidatorApplet gives visual feedback
as to whether or not all student-requirements are satisfied by
each and every instructor/time-slot permutation. The larger
the percentage of success, the better the fit of instructor/time-
slot mappings to the students’ needs.

Circumstances may exist where none of the schedules can
satisfy the students’ needs. This situation typically arises
when there is a time-slot conflict between the “required-
courses” (from CourseScheduler) that must be given in order
to satisfy the students’ single-schedule needs. These students
(by design) must have their needs satisfied, if the goal of grad-
uating these students [in the minimum number of semesters]
is to be achieved.

Once a viable schedule is found, it can be displayed by
selecting the “Show Schedules” check-box, and once again,
clicking the “Validate” button. The resultant output indi-
cates (in alphabetical course-order) which classes are taught
by which instructors and in which time-slot they are taught to
satisfy the student requirements.

Software package
This software package is broken up into three pieces:

1. CourseScheduler - a process which generates all possible
schedules for all instructors, based upon the courses needed
by all students. This particular application is written in C++.
It has been tested and debugged using both GCC (under Linux
and Solaris), as well as Microsoft Visual C++ v5.0 (under
windows Ni“).
2 . IApplet - an applet which allows instructors to indicate
when they would prefer to teach the courses that are needed
by the student-body. This piece of software uses the Java
Runtime Environment (JRE1.3) available from Sun Microsys-
tems, and has been tested and debugged on Linux,Solaris, and
windows NT.
3. AdmValidatorApplet - an applet which allows a depart-
ment chairperson to view and validate instructors selections
as to when they teach their courses. This tool gives the chair-
person an indication as to how “successful” a given schedule
is, according to the time-slots chosen by the instructor, and
how well they meet the students’ needs. This piece of soft-
ware uses the Java Runtime Environment (JRE1.3) available
from Sun Microsystems, and has been tested and debugged on
Linux,Solaris, and mndows NT.

The overall approach to finding a solution (the “best”
schedules to offer in a given semester, so that the student-body

3This applet uses the same permutation algorithm as CourseScheduler:
the only exception is that the applet does it in Java.

0-7803-6669-7/01/%10.00 02001 IEEE

is able to graduate in the least amount of time) occurs in the
following steps:

Software execution
The following snapshots show:
Step 1 -find courses required by all students in the system:

duplicate
Student ’
Student ‘
Student ’
Student ’
Student ’
Student ’
Student ’
Student ’
Student ’

requirements: ’
822’ has
826’ has
s13’ has

88 ‘ has
sl’ has
825’ has
s4’ has
s2l’ hae
s17’ hae

820‘.
1 combinations : dPE210 cPE387 MATH109 MATH323 PHYsll21
1 combinationa : <AD101 CPE387 cs102 EuGR300 HvHC20l MATH323>
1 combinations : rCPE387 CPE4lO CPE447 CS102 E8235 MAlX112,
1 combinations : cs102 ENGRlll MATH112 MATH227 PHYSlllr
1 combinations : <AD101 CPP315 HUMC20l MATH323 PHYSlllr
1 combinations : d ~ i o i cpn38i 88235 m c 2 0 1 MATH323 sscc202>
1 combinatione : <AD101 CPE315 CPE387 CPE471 PHYS111>
1 combinatione : ~ M E M l O 3 CPE315 EE235 HvHc201 MATH323 SSCC201>
1 combinations : <CPE315 CS102 ENGLC101 MATH323 PHYS112,

Student ’ 83’ has 3 combinations
Student ’ ell‘ has 3 combinations (reduced to 2)
Student ’ s2’ has 4 combinations (reduced LO 21
student ’ 86’ hae 6 combinationa (reduced Lo 4)
student ’ 816’ hae 6 cnnbinatione (reduced LO 4)
Student ‘ 823’ hae 6 combinations (reduced LO 21
Student ‘ 8 5 ’ has 7 combinations
Student ‘ 87’ has 17 combinations (reduced LO 15)
Student ’ a15’ has 36 combinations (reduced LO 151
Need 33312381 COmbiMriona (reducible to 604800)

Note that Students 22-17 all have only 1 possible course-
set. This implies that in order for these students to graduate
in the minimum number of semesters, the appropriate courses
MUST be offered. Coursescheduler displays the reduction
information. In several cases, no reduction is possible (mean-
ing that the “required-courses” as generated from the students
having only a single possible schedule could not be “factored-
out”) for several students with multiple possible schedules.

One noteworthy exception is Student S2.5 whose number of
permutations is decreased by more than 4.

Step 2 - determination of instructor availability and cov-
erage. At the University of Bridgeport, faculty members
are allowed to teach (at maximum) 3 courses per semester.
The number of combinations for an instructor who is cap-
able of teaching n courses but only r at a time is given by
C(n,r)=*. So, if we look at Professor Eigel below (who
is capable of instructing 5 different courses), we have

~ (5 3) = - 3 + 3 + = 10 permutat-
ions.
no needed courses for ‘rigia‘ who teaches <CS200>
InStNCtore (for courses needed by students) :
eige1 Edvin Eigel r~TH109,MATH112,MA~ll2,MAlX227,MA~323~
mahmwd Ausif MahmJod ~CPE387.ENGRlll.EWGR111.ENGR300~
abua Abdel Aburneid <CPE471,CPE473,CSl02>
ee-guy elect-eng-guy ~EE235,EE443,E~GGR300>
grodzinsky Stephen Grodrinsky <CPE315,CPE44n,CPE489~
gverra Deborah Guerra ~MATH109,MA~112,MATK215>
phye-guy physics-guy ~CHW103.PHYS111.PHYS112~
art-guy artie-the-art-guy ~AD101.CAPS390~
dlyon Douglas Lyon <CPE21O,CPE387>
engl-guy english-guy <ENGLlOO.ENGLClOl>
healey Stephen Healey ~SSCC201.SSCC202~
human-guy hwnanitiee-guy ~HUMC201.mC202r
multi-guy multi-discipline-guy <FREELECl.TELECl>
ramalie Natalia Romlie <CPE447,CPE489r

<CPE315,CPE460> 8obh Tarek Sobh
v-der-kroef Justus van der KrOef cSSCC201.SScC202~
dichter Julius Dichter <CS102>
elleithy ? Elleithy <CPE21O>
li“ Gonhsin Liu <CPE4lO>

In the above list, one should note that certain courses
have been removed, as they are not “needed” by the student-
body for this semester (this is not to say that they should
nodcan not be offered as electives. For example, accord-
ing to the instructor input-file, Professor Liu is needed to
instruct CPE410. He is also capable of teaching CPE498

October 10-13,2001 Reno, NV
31st ASEEnEEE Frontiers in Education Conference

F4F-12

Session F4F

and CS536X, but these courses have been removed since the
needs of the student-sample does not require either of these 2
classes.

Once CourseScheduler knows which courses are needed,
it then finds all combinations for every instructor (from the
courses that are needed, and the fact that the instructors are
only allowed to teach 3 courses). Once all of the combinations
are calculated, permutations are generated for all instructor-
combinations.

: 10 conbinationa.

: 1 combinations.
: 1 combination#.
: 1 combinations.
: 1 combinations.

: 1 combinations.
: 1 combinations.
: 1 combinations.
: 1 combinariona.
: 1 combinations.
: 1 combinations.
: 1 combinations.
: 1 combinatione.
: 1 combinations.
: 1 combinations.
: 1 conbination..
: 1 combinationa.

in.cru=t.=-eDmbin.tiona.

: 4 COmbiMtiOnS.

: 1 COmbiMtiOns.

out of a0 inatructors.

One may notice that Professor Rigia has been removed
from the list, as she teaches courses that are not required by
the students’ needs.

Once the minimal-set of required-courses is generated by
CourseScheduler, instructors or an administrator should be-
gin to fill in the “time-slots” as to when instructors should
teach the courses to the students. This is accomplished by
using IApplet.

Each faculty member would use a web-browser to maintain
their preferences (by clicking a hypertext-link to IApplet on a
web-page exclusively for faculty activities.). A login-panel

Fig. 1. Login-panel during instructor login.

appears (Figure 1) and the staff-member would fill in their
user-id and password, and begin the process of choosing when
(during the day) they would like to instruct their classes. After
all courses (in all permutations) have a time-slot associated
with them, the instructor would click the “Save” button.

In Figure 2, Professor Eigel has 2 permutations of classes.
He must teach MATH227 and MATH323. Time-slots must
also be allocated for both MATH109 and MATHl 12. Also in
Figure 2, we see that Professor Eigel has begun his election-
process. MATH227 has been allocated Time-Slot 8, which
translates to 1 OAM-12PM Tuesday morning.

In order to complete the process, Professor Eigel must con-
tinue to select time-slots for the 5 other courses. If he so

0-7803-6669-7/01/%10.00 (32001 IEEE

Fig. 2. Professor Eigel’s preferences.

desires, he can indicate his preference as to which of the
two course-sets he wants to teach (meaning he may prefer
to teach MATHl 12 instead of MATH109 next semester). He
would use white arrows (between the course-permutations and
“translation” section) to move course-sets up or down. The
higher the course-set, the more the instructor prefers the given
course-set. In Figure 2, the current row may only be moved
downwards. This preference mechanism is used in AdmVal-
idatorApplet when determining schedule-viability.

If IApplet is being run by an administrator (typically
reached via a protected URL), no login-panel is required, as
this version of the applet is not “public”.

~ _-

Fig. 3. Administrator viewing instructor with a single course-set.

In Figure 3, we see the administrator viewing Professor
Abuzneid’s scheduling-preference. We know that this is the
administrator due to the presence of the Instructor-ID and two
yellow arrows, top-right. The arrows allow iterating through
the instructors in order to viewkhange their coursehime-slot
information. In Figure 4, Professor Mahmood has three pos-
sible combinations. The more able the professor, the more
course-sets need to be filled-in.

Once all instructors have specified their preferences as to
when they desire to teach their courses, and which particular
course-set is more interesting to them (if applicable) 5 , the
administrator mns AdmValidatorApplet.

Using AdmValidatorApplet, the administrator examines
the results of the scheduling process. He/she can view reasons

4the instructor is capable of instructing many courses, and the courses are

‘this applies only to instructors who have multiple course-sets to manage.
needed by the student-population.

October 10-13,2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

F4F-13

Session F4F

for poor viability, and fine-tune the results by having IApplet
and AdmValidatorApplet both visible.

In Figure 5, we see that Instructor combination 0 has 100%
viability, while combination 1 has only 82% viability. The
administrator may want to know exactly why only 82% of
student-requirements are satisfied. To view this, the adminis-
trator checks the Show Conflicts button, then re-clicks Vali-
date.

Figure 6 shows (verbosely) how Student “S5” had 6 out of
7 possible schedules satisfied. We see that MATH109 could
not be scheduled since the student also needs CPE471; both
classes are being offered in Time-Slot 8 . Since the student
cannot participate in 2 classes at the same time, this schedule
is not 100% viable for this student.

Should the administrator wish to fix this conflict, they can
move either of the conflicting courses to a different time-slot.
N.B. one must be careful when doing this, since the suc-
cesdviability of other students’ schedules may depend upon
the current time-slot allocations.

Limitations and Future enhancements
Limitations

1. time-slot values are currently fixed-value. A much more
dynamic solution would be desirable. Specifically, one that
handles datehime issues.
2. a guaranteed solution does not always exist. Success of
this process is primarily determined by instructor-selection of
desired teaching times. A better approach would be to gen-
erate the time-slot information based upon the needs of the
students (i.e. which classes exist that cannot be scheduled at
the same time).

Clearly, this system is limited in a couple of ways:

Future Enhancements

Future enhancements are subject to the approval and inter-
est in the results of this project. Some ideas:
1. CourseScheduler engine - This would contain a set of
functions/ objects which could be utilized through other pro-
gramming languages to allow increased flexibility. This

Fig. 4. Administrator examining instructor with multiple preferences.

0-7803-6669-7/01/%10.00 02001 IEEE

Fig. 5. Examining viability of generated schedules.

Fig. 6. Examining reasons for poor viability.

would obviate the need for much of the Java processing,
which is inherently slower than C or C++. Extensions for
COMDCOM (Microsoft) or RPC (remote-procedure-call -
available under most flavors of Unix) are possible, and prob-
ably desirable. This would also remove redundant program-
code, and provide a single, cohesive tool-set for programmers
to access in several ways.
2. time-slots - this is really necessary for this product to
function in the real-world. At the very least, the time-slots
should be maintainable by the administrator.
3. time-slot generation - should really be generated from
the student-data. This seems to be the “best” solution, given
that individual instructors have insufficient information as to
when other “core” courses are being offered, and they may
attempt to schedule their own “core” courses at the same time.

Conclusions
Using CourseScheduler, IApplet, and AdmValidatorAp-

plet together as a suite of tools will help department chair-
persons in the course-scheduling process. One of this suite’s
strong points is that it removes a lot of guess-work from the
scheduling process by providing:
1. immediate feedback and visual cues allowing for quick
conflict-resolution.
2. sampling of the student-requirements, which minimizes
the problem of the instructor having to guess as to which
courses to offer.
3. simple and easy-to-understand controls / user-interfaces.

While this suite does not address classroom-allocation or
class-size issues, we believe that it can be an enormously ben-
eficial set of tools to members of the educational community.

References
[11 Raul Mihali et al. SKED: A Course Scheduling and Advising Software.
[2] Ellis, Margaret A. and Stroustrup, Bjame. The Annotated C++ Refer-

ence Manual. Addison-Wesley Publishing Co., New York, 1990. ISBN
0-20 1-5 1459- 1

October 10-13,2001 Reno, NV
31st ASEEIIEEE Frontiers in Education Conference

F4F-14

Session F4F

[3] Knuth, Donald E. The Art of Computer Programming: Volume 3, Sort-
ing and Searcbing.,Second edition., Addison Wesley Longman, Reading,
Massachusettes, 1998. ISBN: 0-201-189685-0.

[4] Satir, Gregory and Brown, Doug. C++: The Core Language. O’Reilly &
Associates, Inc., Cambridge, 1995. ISBN: 1-56592-166-X.

[5] William H. Press et al. Numerical Recipes in C, Cambridge University
Press, New York, New York, 1992. ISBN: 0-521-43108-5.

[6] Thomas A. Cormen et al. Introduction to Algorithms, The MIT Press,
Cambridge, Massachusettes, eighth printing, 1992. ISBN: 0-262-03 141-
8 (MIT Press), 0-07-013 143-0 (McGraw-Hill).

0-7803-6669-7/01/%10.00 @ZOO1 IEEE
31st ASEEIIEEE Frontiers in Education Conference

F4F-15

October 10-13,2001 Reno, NV

