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Abstract 

In this work we address the problem of tolerance 
representation and analysis across the domains of in- 
dustrial inspection using sensed data, CAD design, 
and manufacturing. Instead of using geometric prim- 
itives in CAD models to define and represent toler- 
ances, we propose the use of stronger methods that 
are completely based on the manufacturing knowledge 
for the objects to  be inspected. We guide our sensing 
strategies based on the manufacturing process plans for 
the parts that are to be inspected and define, compute, 
and analyze the tolerances of the parts based on the 
uncertainty in the sensed data along the different tool- 
paths of the sensed part. We believe that our new ap- 
proach is the best way to unify tolerances across sens- 
ing, CAD, and CAM, as it captures the manufacturing 
knowledge of the parts to be inspected, as opposed to 
just CAD geometric representations. 

1 Introduction 

In this work we address the problem of recovering 
manufacturing tolerances and deformations from the 
uncertainty in sensing machine parts. In particular] 
we utilize the sensor uncertainty to recover robust 
models of machine parts, based on the probabilistic 
measurements recovered] for inspection applications. 
We design and implement a spline-based model that 
captures manufacturing tolerancing based on uncer- 
tain sensed data and knowledge of possible manufac- 
turing process plans. 

This work was supported in part by DARPA grant 
N00014-91-J-4123, NSF grant CDA 9024721, the Ad- 
vanced Research Projects Agency under Army Research 
Office grant number DAAH04-93-G0420, and a University 
of Utah Research Committee grant. All opinions, findings, 
conclusions or recommendations expressed in this docu- 
ment are those of the author and do not necessarily reflect 
the views of the sponsoring agencies. 

We design and implement our sensing strategies 
and tolerance determination algorithms based on in- 
terval splines. We believe this is the best way to 
define a unifying framework] as it captures both pa- 
rameterizable manufacturing tolerancing errors, and 
non-easily-parameterizable ones (toolpaths that pro- 
duce a surface definition, for example). This method 
is also suitable for our purposes as the CAD mod- 
eler (The Alpha-1 system[4], designed at the Univer- 
sity of Utah) is based on spline representation, and 
it is used to produce process plans and toolpaths for 
NC milling machines to  manufacture the actual parts 
from CAD models. Our tolerancing method captures 
the mechanical way in which the manufacturing tool 
moves and actually makes a feature, surface or curve 
in a manufacturing process. 

A tolerance specification on the shape geometry 
must be transformed into the corresponding tolerance 
on the machining operation and vice versa. This in 
turn can be used to select an appropriate manufac- 
turing process, given knowledge of the manufactur- 
ing accuracy of the process. This yields direct meth- 
ods for deciding on sensing strategies both to moni- 
tor the manufacture of the part, as well as for post- 
manufacturing inspection. The usual approach to val- 
idation is to simply measure the geometry resulting 
from the manufacturing process and compare it to the 
nominal geometry from the CAD model. We believe 
that a stronger approach] exploiting knowledge of the 
process plan and the particular manufacturing pro- 
cess, is possible, and that this approach permits the 
automatic synthesis of sensing strategies. 

2 Background, Motivation, and 
Methodology 

The traditional approach to structuring sensing strate- 
gies and tolerance computation for the inspection of 
machine parts has been to utilize the sensed data 

- 2859 - IEEE lnterriatlonal Conference 
on Robotlcs and Acilomatlon 
0-180.3- lY65-6/95 $4.00 81995 IECE 



(range, image, and/or touch) and the recovered ge- 
ometries of the sensed objects for guiding the sensors 
to get more data and to do better fittings at the “rele- 
vant” or “uncertain” regions. We propose an approach 
that is based on the knowledge of the actual man- 
ufacturing process for the parts to be inspected, as 
opposed to only the sensed data points and the re- 
covered geometric CAD model. Our approach utilizes 
the knowledge of the process plan and the subsequent 
toolpath of the milling machines and the errors, un- 
certainties, and tolerances associated with that pro- 
cess to achieve an optimal sensing strategy at the rel- 
evant regions, features, and manufacturing path on 
the parts to be inspected. We anticipate that this ap- 
proach will not only permit us to answer questions 
concerning design and manufacturing processes, but 
also gives a way to determine places in the process 
and on the part where sensing is useful to ensuring 
that tolerances are met. We propose toolpaths with 
tolerances as an instance of the manufacturing pro- 
cess (process plan) that provides a unifying approach 
to dealing with tolerance and sensing issues across de- 
sign, manufacturing and inspection. 

The use of interval Bezier curves for a complete 
description of approximation errors was proposed by 
Sederberg and Farouki[7] (see paper for details). In 
our paper[5], we utilize Bezier curves for basing sens- 
ing strategies on manufacturing knowledge. The basic 
idea is to extend splines to polynomials whose coef- 
ficients are intervals with well defined arithmetic op- 
erations. Such splines define a region in space rather 
than a curve. This notion captures very nicely the 
semantics of a tolerance specification. We have de- 
veloped interval curves for both 2D and 3D and algo- 
rithms based on interval splines for machine toolpath 
representation. We have also implemented toolpath- 
based algorithms for answering tolerance questions in 
inspection of parts, and for structuring coarse-to-fine 
sensing strategies based on tolerance regions around 
sensed data. 

In order to structure the analysis process, we focus 
here on NC milling, and use the toolpath as the basis 
upon which design and manufacturing tolerance and 
sensor measurements will be compared. Much as op- 
erational semantics allows the meaning of a high level 
program to be defined in terms of the particular archi- 
tecture upon which it executes, so can the CAD speci- 
fication of a part be defined in terms of the machining 
operations which produce its shape. Given the CAD 
geometry for a part, a tolerance specification, and a 
class of NC mill to be used, then generic knowledge 
about such mills can be used to generate a desired 

toolpath with its associated tolerance (call it TPd).  
Once a specific mill is selected, then the nominal tool- 
path from TP, together with the accuracy of the mill 
determine the actual toolpath (call this TP,) .  These 
two toolpaths allow us to determine a great deal about 
the efficiency and uncertainty regions of the process. 
First, if T P ,  c TPd is true, then we know that the tol- 
erance should, in principle, be achieved. If TPd - TP,  
is large, then the selected machine may be too pre- 
cise, and therefore, too expensive. If the boundary of 
TP, is close to that of TPd, this signals places where 
sensing may be necessary to guarantee the inclusion 
relation. This also gives insight into how accurate the 
sensing needs to be. Even if TP, is not contained 
in TPd,  this approach allows us to estimate what per- 
centage of milled parts will be out of spec, and thus an 
informed decision can be made whether to tighten the 
accuracy of the machine, or where to sense with high 
probability of part error. Thus, the toolpath repre- 
sentation allows insight into design, manufacture and 
inspection in a common framework. 

3 Interval Splines and Generalization: 
Checking that all points reach the 
tolerance goal 

3.1 Interval Splines 

Our proposed representation generalizes to 3D: if the 
assumption is made that the sensing error is Gaus- 
sian, then it can be described by an ellipsoid around 
each sensed point (using a step value). Thus, along 
a sensed toolpath, an offset surface is produced (see 
[3]). We have only assumed that the enclosing en- 
velopes are described by ellipses in planes orthogonal 
to the toolpath. Hence our algorithm allows for rep- 
resenting volumetric error and can easily be extended 
to shapes other than ellipses - which means different 
offset surfaces. This approach will require the ability 
to answer the question: is one ellipse inside the other 
one ? as fast as possible - when they are in the same 
plane. The final test will be to check the reliability 
of the proposed algorithm on real sensed data, along 
manufacturing toolpaths on parts that are inspected. 

The algorithm uses a property that is associated 
with curves of the same degree, which is the basis of 
interval splines. Since a B6zier curves of degree k is 
deduced from the control point by the recursive equa- 
tion (see [ti]): 

2860 



Pf ( t )  = Pi ( j  - k 5 i 5 j )  
and for 0 5 r 5 k - 1 

when j - k + r 5 i 5 j 
P;'+l(i) = tPi'(t) + (1 - t)Pi'-,(t) 

P / ( t )  = S(t) .  

For curves of same degree, if the corresponding control 
points are on a line (resp. on a plane), then during this 
recursive process each corresponding Pi' ( t )  will also be 
on a line (resp. on a plane), hence for all t the different 
evaluations (S l ( t ) ,  &(t)  ...) will give points on a line 
(resp. on a plane). An easy way to ensure that the 
control points are on a line is to have initial points on 
a line, too, since the control points are deduced by a 
linear operator. 

3.1.1 2D Interval Splines 

det 

. .  '. . : !  

z ( t )  21 2 2  2 3  

YO) Y1 Y2 Y3 
~ ( t )  z1 2 2  z3 

1 1 1 1  

Figure 1: One Interval Spline 

In our 2D representation, an interval is a set of 3 
points (corresponding to the nominal point and two 
bounds). The spline interpolation is done (on 6 con- 
secutive points) separately on each of the 3 corre- 
sponding curves (see Figure 1). Note that evaluation 
at any parameter t E [0,1] yields 3 points on a line. 

As indicated above, the determination of inclusion 
of one interval spline within another is important. Fig- 
ure 2 shows the case where inclusion is true. 

We have developed a technique to answer this ques- 
tion. Moreover, if one interval contains another, then 
the 2-D difference of the two intervals is also possible 
to determine. 

3.1.2 3D Interval Splines 
In 3D, we've assumed that the uncertainty around 

a point is described by an ellipse (in the plane normal 

Figure 2: TP, c TDd 

to the curve). Thus, we also use 3 points to describe 
the ellipse ( X  for the nominal point, and X1 and Xz 
the two extreme points along the two axis of the el- 
lipse). The problem reduces to determining whether 
one ellipse is inside another. We have developed an 
algebraic solution to this problem (see section 3.2.2). 

3.2 Description of the Algorithm 

There is no significant difference between the 2D and 
the 3D algorithm, except for the part that compares 
two intervals (resp. two ellipses). Both algorithms 
use a procedure to check if the interval spline from the 
sensing device (We used a GRF-2 light striper scanner) 
is inside the interval spline of the allowable tolerance 
model. 

3.2.1 Common part 

the following three steps are used: 
To verify that one interval spline is inside another, 
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Figure 3: Included Interval Spline 

spond to one interval spline, thus the algorithm cuts 
the second interval spline to redefine it (the determi- 
nant utilizes the initial points used to define the first 
interval spline at the beginning). So there is no need to 
have two interval splines of same degree at the begin- 
ning, since the second one is completely rebuilt (with 
the same degree, and control points on the same line or 
plane as the first interval spline). See Figure 3 where 
1 = (a ,b ,c)  cuts the interval spline 11 in d,  f and e 
to define a new interval: with classical methods, that 
have to be done (see [8]). 

2”d: Compare as many intervals as possible. 
Now that the intervals came together, this part is com- 
putable in O(n) where n is the number of points on a 
spline (resp. ellipses). 

3‘d When 2nd fails, check if it’s an ending: 
If not, then the inclusion fails. This check has to be 
made as both splines do not necessarily begin or end 
at the same time. 
To check an ending, the methods in 2D and 3D are 
very similar. The method utilizes the fact that the 
sign of the determinant of vectors gives the orientation 
of such a frame - when it is compared to the canonic 
frame. Hence, comparing two determinants can decide 
whether two points are on the same side of a line or a 
plane. 

3.2.2 Algebraic Solution to Ellipse Inclusion 

If the two ellipses do not intersect and if the cen- 
ter of one is inside the other, then one is contained 
by the other one. For the intersection of ellipses, we 
have developed an algebraic solution using the Sturm 
Theorem (see [1] or [2] for more details). 

We assume that the implicit equation of the ellipse 
with center X ,  and which goes through the extreme 
points XI and X2 (assumed to be along the 2 orthog- 
onal axis, but it is not necessarily the case along the 
curve) is given by the following: 

take = and 6 = then: 

We also also assume that the second ellipse has the 
following parametric equation (same approximation): 

2t - ( 1 4 )  - 
M ( t )  = X’ + - x;x/ + T X l X /  

1 +t2 l + t  
substituting this point in the implicit equation of the 
other ellipse gives the following polynomial of degree 
4: 

The real roots ~ if they exist - realizes up to 4 
points of intersection of those 2 ellipses. The Sturm 
theorem on polynomials suggests an algorithm to find 
the number of roots of any polynomial. If this algo- 
rithm is applied on a polynomial with symbolic vari- 
ables as its coefficients, one can get a condition that 
determines when (and only when) the polynomial has 
a real root. If this is performed on the polynomial 
X4 + a X 2  + bX + c we find’: 

r = 
A = 

2a3 - 8ac + 96’ 
16a4c - 4a3b2 - 128a2c2 + 144ab’c 
-27b4 + 2 5 6 ~ ~  

X4 + aX2 + bX + c has no real roots if and only if 
( U  2 0 and A > 0) or (a > 0 and I’ = 0) or (a < 0 

and r > 0 and A > 0) 
If the polynomial X4 + dX3  is viewed as the begin- 

ning of the expansion of ( X  + a)4 then one can see 
that an appropriate translation transforms any degree 
4 polynomial into a polynomial T4 +UT’ + bT + c with 
T = X - cr. For our problem, the resulting values of 
a,b and c are given by the equations: 

- - +  

A1 = -xgx/.v, Bl = 2XCX/.G 

c1 = (X% + XrX/).< c, = (X% + XgX/).f2 
A = J m  B = J m  
C = J m  

- - +  

A:! -XgX‘.V2 Bz = 2X<X‘.I& 

‘result taken from the course “geomktrie semie- 
algkbrique” from Professor Coste (University of Rennes, 
France), DEA IMA. 
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then P ( t )  = c4t4 + est3 + c2t2 + cl t  + cg with two intewal splines 

c4 = A' - 1 

c1 = 2(BlC1+ B2C2) 

e3 = 2(A1B1+ A2B2) 

CO = c2 - 1 
cz E B2 + 2(AiC1+ AzCz - 1) 

and finally, we can find a and then a,b and c: 

c3 - 6~4(*.' 

4c4 c4 
a = -  U =  

~1 - 4 ~ 4 ~ ~  - 2 ~ ( ~ 2  - 6 ~ 4 2 )  

c4 
b =  

CO - c4a4  + - 6 c 4 a 2 )  - @(cl - 4c4a3)  e =  
e4 

4 Experimental Results 
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0.874 - - - -  -- 
0.244 - 

5 

4.1 Tests on some mathematical curves 
Figure 5: Open torii with a vertical deformation 

two intetval splines 
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Figure 4: Case when the tolerance goal fails clearly 

We have many results from different mathematical 
curves, and the algorithm works as expected. Figure 
4 shows a case when the inside surface has been lifted 
enough to make an intersection. Figure 5 is a regular 
case. 

4.2 Tests along the sensed toolpath for an 
inspected cover plate 

The algorithm was tried on real sensed data, from the 
GRF-2 scanner, along a toolpath from a manufactured 
cover plate pocket. The scanner was not very accu- 
rate, so first we recognized pieces of lines and arcs out 
of the noisy points from the scanner and defined those 
as our nominal curve. This is not a bad approxima- 
tion as the NC milling machine tool actually moves 

only in straight line and circular segments. For each 
point from the scanner we find the closest point to this 
nominal curve and - eventually - increase the radius 
of the sphere around the nominal point to include the 
point from the scanner. Finally, we smooth the val- 
ues from the radius 40 times and define the surface 
with circles orthogonal to the path. Our algorithm 
compares it to the tolerance spline model, a few runs 
produced a good idea of the minimum specifications. 
Notice that both nominal curves from the model and 
from the scanner are quite different at some spatial 
instances, certainly because of a scale factor or a de- 
formation from the scanner. Accurate data from a 
CMM along a toolpath would produce a much more 
precise input for the algorithm. 

Figures 6 and 7 represent the inner profile, and Fig- 
ure 8 is the outer profile of the cover plate pocket. 
For the first one, we have found that a radius around 
the nominal curve of the model should be more than 
0.12 cm. For the outer profile, we have found that it 
should be more than 0.065 cm. It should be obvious 
that more precise results can be obtained with more 
runs. As one can see on the cross section of the outer 
pocket (Figure S), a few bad points can badly influ- 
ence the result, specially if there is already an error 
between the two nominal curves. 

5 Conclusions 

We propose toolpaths with tolerances as a unifying 
approach to dealing with tolerance issues across de- 
sign, manufacturing and inspection. We consider our 
major contributions to be: 
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two interval splines 
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Figure 6: The points from the scanner and the com- 
puted offset surface: cutting of the inner pocket 

0 Proposing a new unifying framework for toler- 
ance representation, analysis, and recovery, across 
manufacturing, design, and sensing for inspec- 
tion. 

0 Showing that lower-level manufacturing features 
such as tool paths provide a unified framework to 
analyze tolerances in design and manufacture of 
machined parts. 

0 Toolpath-based computational framework for er- 
ror, uncertainty, and tolerance representation in 
the manufacturing, CAD, and inspection do- 
mains. 
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