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Abstract

In this paper we will present the stages of designing and building a three-link robot manip-
ulator prototype that was built as part of a research project for establishing a prototyping
environment for robot manipulators. Building this robot enabled us determine the required
subsystems and interfaces to build the prototyping environment, and provided hands-on ex-
perience for the real problems and difficulties that we would like to address and solve us-
ing this environment. Also, this robot is used as an educational tool in robotics and control
classes.1
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1 Introduction

Teaching robotics in most engineering schools lakes the practical side and usually students end up taking
lots of theoretical background and mathematical basis, and maybe writing some simulation programs,
but they do not get the chance to apply and practice what they have learned on real robots. This is due
to the fact that most of the robots available in the market are either too advanced, complicated, and
expensive (e.g., specialized industrial robots), or toy-like robots which are too trivial and does not give
the required level of depth or functionality needed to demonstrate the main concepts of robot design
and control. One of our goals in this project, was to build a robot that is simple, flexible, and easy to
use and connect to any workstation or PC, and at the same time, is capable of demonstrating some of
the design and control concepts. We also tried to keep the cost as low as possible to make it available
to any engineering school or industrial organization.

We consider the main contribution of this work to be building URK (Utah Robot Kit) which is a
three-link robot prototype that has a small size and reasonable weight which is convenient for a small1This work was supported in part by DARPA grant N00014-91-J-4123,NSF grant CDA 9024721, and a University of Utah
Research Committee grant. All opinions, findings, conclusions or recommendations expressed in this document are those of
the author and do not necessarily reflect the views of the sponsoring agencies.
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lab or a class room. URK can be connected to any workstationor PC through the standard serial port with
an RS232 cable, and can be controlled using a software controller with a graphical user interface. This
software controller applies a simple PID control low for each link which does not require the knowledge
of the robot parameters. Therfore, this software can be used to control any electro-mechanical system
that can be controlled by a physical PID controller. The interface enables the user to change any of the
control parameters and to monitor the behavior of the system with an on-line graphs and a 3-D view for
the robot showing the current position of the robot.

2 Background and Related Work

Controlling and simulating a robot is a process that involves a large number of mathematical equations.
To be able to deal with the required amount of computation, it is better to divide them into modules, in
which each module accomplishes a certain task. The most important modules, as described in [2], are
kinematics, inverse kinematics, dynamics, trajectory generation, and linear feedback control.

2.1 Robot Modules

There has been a lot of research to automate kinematic and inverse kinematic calculations. A software
package called SRAST (Symbolic Robot Arm Solution Tool) that symbolically solves the forward and
inverse kinematics for n-degree of freedom manipulators has been developed by Herrera-Bendezu, Mu,
and Cain [5]. The input to this package is the Denavit-Hartenberg parameters, and the output is the direct
and inverse kinematics solutions. Another method of finding symbolic solutions for the inverse kine-
matics problem was proposed in [11]. Kelmar and Khosla proposed a method for automatic generation
of forward and inverse kinematics for a reconfigurable manipulator system [7].

Dynamics is the study of the forces required to cause the motion. There are some parallel algorithms
to calculate the dynamics of a manipulator. Several approaches have been suggested in [8, 9, 10] based
on a multiprocessor controller, and pipelined architectures to speed up the calculations.

Linear feedback control is used in most control systems for positioningand trajectory tracking. There
are sensors at each joint to measure the joint angle and velocity, and there is an actuator at each joint to
apply a torque on the neighboring link. The readings from the sensors will constitute the feedback of
the control system. By choosing appropriate gains we can control the behavior of the output function
representing the actual trajectory generated. Minimizing the error between the desired and actual tra-
jectories is our main concern. Figure 1 shows a block diagram for the controller, and the role of each of
the robot modules in the system.

2.2 Local PD feedback Control vs Robot Dynamic Equations

Most of the feedback algorithms used in current control systems are implementations of a proportional
plus derivative (PD) control. In industrial robots, a local PD feedback control law is applied at each
joint independently. Some ideas have been suggested to enhance the usability of the local PD feedback
law for trajectory tracking. One idea is to add a lag-lead compensator using frequency response analysis
[1]. Another method is to build an inner loop stabilizing controller using a multi-variable PD controller,
and an outer loop tracking controller using a multi-variable PID controller [12]. In general, using a local
PD feedback controller with high update rates can give an acceptable accuracy for trajectory tracking
applications. It was proved that using a linear PD feedback law is useful for positioning and trajectory
tracking [6].
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Figure 1: Block diagram of the Controller of a Robot Manipulator.

3 Prototyping a 3-Link Robot

3.1 Analysis Stage

This project was started with the study of a set of robot configurations and analyzed the type and amount
of calculation involved in each of the robot controller modules (kinematics, inverse kinematics, dynam-
ics, trajectory planning, feed-back control, and simulation). This phase was accomplished by working
through a generic example for a three-link robot to compute symbolically the kinematics, inverse kine-
matics, dynamics, and trajectory planning; these were linked to a generic motor model and its control
algorithm. This study enabled us to determine the specifications of the robot for performing various
tasks, it also helped us decide which parts (algorithms) should be hardwired to achieve specific me-
chanical performances, and also how to supply the control signals efficiently and at what rates.

3.2 Controller Design

The first step in the design of a controller for a robot manipulator is to solve for its kinematics, inverse
kinematics, dynamics, and the feedback control equation that will be used. Also the type of input and
the user interface should be determined at this stage. We should also know the parameters of the robot,
such as: link lengths, masses, inertia tensors, distances between joints, the configuration of the robot,
and the type of each link (revolute or prismatic). To make a modular and flexible design, variable pa-
rameters are used that can be fed to the system at run-time, so that this controller can be used for different
configurations without any changes.

The kinematics and the dynamics of the three models have been generated using some tools in the
department called genkin and gendyn that take the configuration of the manipulator in a certain format
and generate the corresponding kinematics and dynamics for that manipulator. For the trajectory gen-
eration, The cubic polynomials method was used. The error in position and velocity is calculated using
the readings of the actual position and velocity from the sensors at each joint. Our control module simu-
lated a PID controller to minimize that error. The error depends on several factors such as the frequency
of update, the frequency of reading from the sensors, and the desired trajectory.
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Figure 2: The physical three-link robot manipulator.

3.3 Simulation

A simulation program has been implemented to study the performance of each manipulator and the ef-
fect of varying the update frequency on the system. Also it helps to find approximate ranges for the
required torque and/or voltage, and to determine the maximum velocity to know the necessary type of
sensors and A/D. To make the benchmarks, as described in the next section, we did not use a graphi-
cal interface to the simulator, since the drawing routines are time consuming, and thus give misleading
figures for the speed.

3.4 PID Controller Simulator

As mentioned in Section 2.2, a simple linear feedback control law can be used to control the robot ma-
nipulator for positioning and trajectory tracking. For this purpose, a PID controller simulator was de-
veloped to enable testing and analyzing the robot behavior using this control strategy. Using this control
scheme helps us avoid the complex (and almost impossible) task of determining the robot parameters
for our three-link prototype robot. One of the most complicated parameters is the inertia tensor matrix
for each link, especially when the links are nonuniform and have complicated shapes.

3.5 Building the Robot

The assembly process of the mechanical and electrical parts was done in the Advanced Manufacturing
Lab (AML) with the help of Mircea Cormos and Prof. Stanford Meek. In this design the last link is
movable, so that different robot configurations can be used (see Figure 2).

There are three motors to drive the three links, and six sensors (three for position and three for ve-
locity), to read the current position and velocity for each link to be used in the feedback control loop.

This robot can be controlled using analog control by interfacing it with an analog PID controller.
Digital control can also be used by interfacing the robot with either a workstation (Sun, HP, etc.) or a
PC via the standard RS232. This requires an A/D and D/A chip to be connected to the workstation (or
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the PC) and an amplifier that provides enough power to drive the motors. A summary of this design can
be found in [3, 4].

4 Testing and Results

4.1 Simulator for three-link Robot

This simulator was used to give some rough estimates about the required design parameters such as
link lengths, link masses, update rate, feedback gains, etc. It is also used in the benchmarking described
earlier. This simulator uses an approximate dynamic model for the robot, and it allows any of the design
parameters to be changed.

4.2 Software PID Controller

A software controller was implemented for the three-link robot. This controller uses a simple local PID
control algorithm, and simulates three PID controllers; one for each link. Several experiments and tests
have been conducted using this software to examine the effects of changing some of the control param-
eters on the performance of the robot.

The control parameters that can be changed in this program are:� forward gain (kg)� proportional gain (kp)� differential gain (kv)� integral gain (ki)� input trajectory� update rate

In these experiments, the program was executed on a Sun SPARCStation-10, and the A/D chip was
connected to the serial port of the workstation. One problem we encountered with this workstation is
the slow protocol for reading the sensor data, since it waits for an I/O buffer to be filled before it returns
control to the program. We tried to change the buffer size or the time-out value that is used, but we
had no success in that. This problem causes the update rate to be very low (about 30 times per second),
and this affects the positional accuracy of the robot. We were able to solve this problem on an HP-700
machine, and we reached an update rate of 120 times per second which was good enough for our robot.

5 Conclusion

A prototype 3-link robot manipulator was built to determine the required components for a flexible pro-
totyping environment for electro-mechanical systems in general, and for robot manipulators in partic-
ular. A local linear PD feedback law was used for controlling the robot for positioning and trajectory
tracking. A graphical user interface was implemented for controlling and simulating the robot. This
robot is intended to be an educational tool, therefore it was designed in such a way that makes it very
easy to install and manipulate.
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