
Effective Simulation and Control Techniques for Alleviating the Access to
High-Cost Manipulators. Wireless Control Perspectives

RAUL MIHALI, TAREK SOBH
Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06601, USA

May 2001

Abstract:

The process of deciding-on and purchasing the

right manipulator(s) for a predetermined task can often

turn to be very frustrating, especially when budget, time

or minimal losses appear as essential factors. The

market does tend to get larger and variety driven and

there is a choice for almost any given price, however,

the price / size ratio seems to remain constant. Larger

scale manipulators do not show the price amortization

enjoyed by the majority of the computerized consumer

hardware over the past few years. In addition, the

manufacturers for many of these manipulators do not

provide adequate pre-sales supporting technical

material (whether a result of lack of standardized

specifications or pure negligence), nor effective

warranties and service.

Primarily affected are higher level educational

institutions, where manipulators are likely to be exposed

to student projects that demand constant diversity,

various controlling software and hardware technique;

they are likely to become victims of abusive usage and

in addition to these, the institutions need to offer some

of the highest standards of safety for the students.

This paper presents a flavor of a software

simulation and control package applied on a specific

manipulator that is a significant tool in solving

problems such as the above mentioned ones. In addition,

the package offers a variety of implementation examples

that can be directly (immediately) derived from the

simulation package, as well as a completely functional

implementation of a cell-phone control example of the

CAD model or the actual robot.

1. INTRODUCTION

The paper goes from presenting some of the aspects of

the manipulator used, to presenting a fully functional

simulation and control software specifically designed to

address the problems mentioned in the abstract section

and more. The software package could for example be

used from student residences for acting as a "virtual"

manipulator so they can write their own simulation and

control software (project, homework assignment) that

could be then tested "live" on the actual robot next class.

Such usage can significantly reduce the safety risks

involved with freshmen students attempting to control

the robot. The package can also be “worked-on” by the

student, such as adding vision processing or any project

specific duties, given that the controlling and simulation

parts are no longer of interest to develop. The software

could also act as a remote manipulation tool from

anywhere on the web, by having it connect to another

copy of the tool that resides as a net server on the

machine that is hooked to the manipulator serially. On

top of that, the software package contains a quick full

implementation example of controlling the manipulator

via a regular web enabled cell-phone. Again, these are

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

only some of the immediate applications that although

not unusual, are actual issues in most of the schools.

2. THE MANIPULATOR

We have purchased a manipulator manufactured by

Mitsubishi, model RV-M1 (Movemaster EX) (figure 1).

Figure 1. Mitsubishi RV-M1 (Movemaster EX)

The model is known as a general-purpose commercial

manipulator used in industrial applications (for example

used in pharmaceutical / chemical industry to

manipulate substances in a grid).

Briefly describing, the arm offers 5 degrees of freedom

(not including the gripper), DC servo motors drive. We

will detail specifications as needed through the paper,

but please consult a distributor for a detailed brochure

(www.rixan.com for example). The robot does come with

all the necessary information to program it from a serial

port equipped computer or from its "teaching" pad and

has a software package (mainly editor) that allows

writing short program sets with the robot’s language set

and have them stored in its RAM/EPROM.

3. THE SIMULATOR

3.1. Overview

The simulator was designed from its inception with the

student as a main beneficiary in mind. One of the goals

was to be able to reproduce as much as possible from

the actual robot and its characteristics through the

software, in such a way so that the software itself could

act as a "virtual" manipulator, almost replacing the need

for the actual manipulator. Such an approach should

allow the student to familiarize him (her) self much

better with the respective manipulator, and to have no

surprises at all when later connecting to the actual robot.

3.2. DESIGN CONSIDERATION

3.2. A. Interface, GUI

One of the commonly encountered problems in the

majority of the simulators available nowadays is their

graphic user interface layer. Students tend to get excited

of installing a certain simulator, but very often loose

their determination when they see a briefly sketched set

of links, lack of an intuitive GUIs or instant overloads of

variables and input coordinates. The robotics field needs

to be presented in its full color, while certainly having

one of the vastest levels of theoretical complications and

combinations, it maintains a very presentable visual or

physical implementation that tends to be the final

product.

This was one of the aspects to consider, and we opted

for using OpenGL and rendering the manipulator closely

to the actual model, such as it cannot be confused with

any other manipulator (figure 2).

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

Figure 2. Simulated manipulator

3.2. B. Programming Language

A second aspect to consider, in fact immediately derived

from the first one mentioned before, is the programming

language to choose. Many students or engineers do not

always have the right aspiration towards advanced

programming techniques, and probably this should not

be at all a showstopper factor for a robotics enthusiast.

As a result, we opted for using Visual Basic and make

the code as simple (though robust) as possible. With the

help of publicly available software tools [1], the

OpenGL power was integrated in Visual Basic. Having

these two entities as a starting base, the simulator code

proves to be simple; changes of few minutes in the code

can derive to custom requirements. Visual Basic is also

a great medium for describing robotics equations such as

inverse kinematics / dynamics, trajectory calculations, as

debugging of these tends to be much simpler when

compared to most of the other languages. Of course

there is a limitation drawback that boosts C++ as a

preferred choice in professional levels (fast

synchronizations, advanced hardware control at

assembler level etc), although the differences tend to be

diminished lately by technologies like Active X.

The following sections present each distinctive part of

the simulator

3.3. Front End (GUI)

When the simulator is being activated, the user has the

view from Figure 2, and any dragging of the mouse over

the graphics scene will rotate the point of view for a

better observation. The user has the choice to perform

many different view related operations through the

Scene tab: set the mouse to perform desired rotations,

translations, change the point of view or lock onto views

such as “top”, “side” etc. The coordinates of the viewing

point are dynamically updated on the status bar of this

view. The orientation of the axes is also displayed in the

lower left corner, and their coloration is being used

consistently throughout the simulation package to

represent distinctly each of the axes. In general, any of

the options that are being used have a direct effect on

the CAD manipulator displayed and even on the actual

robot, if a connection is active.

3.4. Kinematics

Although the MoveMaster EX manipulator accepts as

controlling parameters both direct and inverse

kinematics by design (thetas or X, Y, Z, roll, pitch, yaw)

the simulator solves the inverse kinematics as well,

giving the user the option to see inverse kinematics

action on the CAD model itself, without the need to be

connected to the manipulator. The inverse kinematics

equations were solved through direct geometric /

trigonometric approaches [2], although similar equations

would have been reached through the usage of more

traditional DH (Denavit – Hartemberg) tables [3]. A

step-by-step demonstration of the equations used are

available online at www.bridgeport.edu/~risc, and

[4,5,6] show previous similar simulation work that were

successfully achieved.

The kinematics control module is available through the

“MoveMasterEX” tab (Figure 3).

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

Figure 3. MoveMaster EX tab

Notice that although the Velocity Kinematics and

Acceleration Kinematics are provided as sub options

under the Kinematics options, they are not implemented

as the MoveMasterEX manipulator does not support

them (the manipulator only has a limited velocity

control, a choice of 5-6 preset values [7]). If it is desired

to adjust the software tool for a different manipulator,

then the developer will implement these as needed.

The Position Kinematics interface (Figure 4) allows the

direct and inverse kinematics control of the robot.

Figure 4. Position Kinematics Interface

The activation of any of the direct kinematics scroll bars

will instantly update the inverse kinematics ones and

vice versa. The CAD manipulator itself moves

accordingly too and if the simulation package is

connected to the actual manipulator or a server version

of the simulator, they will of course move too (these

features are described through the following sections). If

by controlling any of the inverse kinematics scrollbars

the manipulator would risk an out-of-workspace position

(solution), the user will be warned and both the CAD

robot and the actual one (if connected) will not be

updated until a new correct position is reached.

Such an implementation allows a very safe control over

the existing manipulator and allows the user to easily

observe the actual workspace and its limitations.

The marginal values used for thetas and the inverse

kinematics were matched from the robot’s technical

manual [7]. Minor discrepancies were noticed, which

are typical and ignorable for this particular class of

manipulator.

3.5. Trajectories

Trajectory control / plotting is an essential step in any

moderated robot control project. The simulator

encapsulates a robust trajectory generation module, and

through the easy to use source code, the user should be

able to observe and modify as needed the

implementations. The trajectory curves implemented in

this package are Lagrange, COONS, Hermite, B-Spline,

Bezier and Ferguson [8], which should be more than

sufficient for most of the applications (Figure 5).

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

Figure 5. Trajectory Settings

The user can set up and adjust trajectories without too

much experience with the simulator. A set of control

points needs to be defined (2 to 50), then a number of

intermediate points for the interpolations and the

trajectory will be dynamically adjusted in the scene and

can be applied to the actual manipulator through the

Apply option. Figures 6, 7, 8 show a few examples of

designed trajectories (Lagrange, Hermite and Bezier

respectively).

Figure 6. Four points Lagrange trajectory curve

Figure 7. Four points Hermite trajectory curve

Figure 8. Four points Bezier trajectory curve

For choosing and adjusting the actual control points and

their exact order, the user will combine the Position

Kinematics panel described above with the Trajectory

Point Set option (Figure 9).

Figure 9 Trajectory Point Settings

Once the arm is moved to the desired location and with

the desired pitch/yaw, the user can set this point, set the

gripping forces and navigate from a set point to another.

Once a trajectory is being set to the desired parameters,

it can be saved as a file and reused with other occasions.

Although the figure 9 displays options for speed and

accelerations at the respective point as well, they are not

implemented due to the limitations of the robot. Notice

that the actual robot will move synchronously with the

users operations if it is connected to the simulator, and

throughout the steps necessary to set up a trajectory the

CAD model presents continuous feedback to the user.

3.6. Other MoveMaster EX Settings

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

For optimal results, the simulator allows for fine

adjustment of some of the manipulator’s simulation

parameters such as IK tolerance, redefining the nesting

position of the arm, the way in which the position

synchronization between the CAD model and actual

robot is done when the connection is made etc (Figure

10).

Figure 10. MoveMaster Settings

3.7. Vision Features

To ease the development of vision processing

algorithms, the simulations tool allows the user to

connect a camera to the package and have frames or

sequences of frames available for processing. We have

tested the simulator with a USB camera model DVC323

by Kodak under Microsoft Windows 2000, although any

camera with a valid VFW (Vide for Windows) driver

will work as well. For the visual support, we have

picked a publicly available OCX control (Xvideo2 by

www.cbcsolutions.com), although there are plenty of

choices for controlling a camera from within a Visual

Basic application.

A more distinct feature in the simulation package is the

ability to have the package run in server mode and have

a client session connect to it and retrieve for processing

a bitmap image of the actual “virtual” scene. For

example a user could decide to add a few objects to the

scene (Figure 11) of the server application, then have

this bitmap transmitted to the client session for actual

vision processing.

Figure 11. Objects added to the scene

The client tool would normally not have these objects in

the scene, as it would be used as a simulator /control

tool on the images that arrive from the server, which acts

as the virtual “real” manipulator. The goal could be to

grab the virtual objects (for example), and for a better

aid the user could also request different views of the

server scene for an easier processing. Notice that this

would not be easily possible through an actual camera,

as cameras can not be dynamically re-positioned unless

with the aid of a second or more manipulators. The

simulation tool can also be used to send to any client

level application the actual video camera images that are

grabbed as described in the previous paragraphs.

As an example, a student could build a simulation and

control package with vision processing that would

actually perform on this simulator and not an actual

robot.

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

3.8. Connecting to the Actual Robot

The connection to this robot needs to be done through a

serial port. The process has been simplified and the

typical failures of adjusting the port settings have been

eliminated (Figure 12).

Figure 12. MoveMaster Connection Settings

Although the default settings should only require the

change to the connected COM port, any other serial port

option can be adjusted and tested and once the test is

successful the connection can be made and the actual

robot will be in synchronization with the CAD model.

A second connection choice is available too, which is

TCPIP. If another copy of this simulation tool is running

and is active as a server, its IP and Port need to be

specified and the connection is now made to the second

simulator, which consequently can be connected to the

actual robot (please see next section for more details).

3.9. Networking the Simulator

The simulator can be switched into Server mode, which

will allow a client session of the simulator, usually

located elsewhere geographically, to connect through

TCP/IP and control the server side CAD model. The

connected client communicates with the server through

direct kinematics (thetas), although the TCP/IP port

protocol implementation is made easy enough to allow

any sort of communication, even direct passing of robot

specific commands to the serial port of the robot. Notice

that the server could be simultaneously connected to the

actual robot or be a client to another instance of the tool,

a chain of simulation packages being possible (Figure

13).

Figure 13 Networking Model

Such a connection model would be very appropriate for

a class simulation for example, where each student’s

workstation could be set to display the exact settings of

the client simulator (professor’s or project presenter’s

workstation) and this one further chained to the actual

robot as well. The TCP/IP networking also allows for

easier development of any other simulation software, by

simply running the server and the “to be designed” client

on the same machine as in Figure 14.

CLIENT

CLIENT/SERVER

CLIENT/SERVER

SERVER/ROBOT

ACTUAL ROBOT

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

Figure 14. Server and Client applications running on the same workstation

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

Any of the chained workstations can be controlled as

well through the position kinematics interface, in this

case overriding all the consequent workstations until the

actual robot (if connected). The workstations could also

be just left to display the position kinematics interface,

which would adjust the scroll bars automatically when a

connected client would send thetas.

3.10. Controlling the Manipulator Via a Wireless

device (Cell Phone)

Wireless control, remote manipulation and distance

learning are easily considered among the top interest

technological problems with mass appliances. To

demonstrate the easiness of turning the control of the

manipulator through this software package into a

wireless solution, a full cell-phone based control

interface was added. The simulator can be turned into

the Web / Cellular Server mode, which will turn it into a

wireless (HDML) server that allows basic control of the

manipulator.

For this step, the package was enriched with a basic

implementation of a wireless HTTP server that allows

the connection from any web enabled cell phone.

Figure 15 shows the server window that allows the

visualization of the protocol messages, while the CAD

model and (if connected) the actual manipulator will

move to various cell phone sent commands.

Figure 15. Cell Phone control server interface

On the cell phone, once the web browser is pointed to

the IP/port address mentioned on the top of the server

window, the user is being sent a small HDML page that

allows him to activate any of the joints of the

manipulator by pressing a key from 0 to 9 (0,1: base

angle increase / decrease, 2-3: elbow angle, etc): The

HDML page is simple:

<HDML VERSION=3.0 PUBLIC=TRUE TTL=60
MARKABLE=TRUE>
<DISPLAY TITLE="M1 Cell Pad">
Use 1-9 to control the arm

</DISPLAY></HDML>

Once the user selects one of the options, the server

intercepts the choice, moves the robot joint and presents

the same controlling page for further movements. Note

that for the implementation of this wireless control

feature, a small TCP/IP listener server was implemented

as a side application and the communication with a cell

phone was tweaked such as the reply from the software

package is acceptable. Various websites such as [9]

proved useful in building the necessary HDML although

for an advanced application there are various books

available.

4. Conclusions

In this paper, we present a software model designed to

alleviate the access to high cost manipulators. The

presented software package offers a variety of usage

possibilities, from a standalone simulation package, a

networked simulation package, to a complete “virtual”

manipulator package. The availability of similar

EFFECTIVE SIMULATION AND CONTROL TECHNIQUES FOR ALLEVIATING THE ACCESS TO HIGH-COST MANIPULATORS

simulation tools for the majority of high cost

manipulators would solve the majority of the problems

involved with the acquisition of these manipulators. The

simulator also proves unique utilization in high end

education institution, by allowing the students to

perform a large number of projects involving a certain

manipulator without actually purchasing, or purchasing

a single or limited number for final demonstration

purposes. The simulator could for example be given to

by the student through a vacation for an extended

project and have him / her continue the work without

needing access to the actual manipulator. The tool can

evidently be used very well as a remote automation

system, or a distance learning method, especially by

setting up a networked chain for all the students in a

distance learning class, with one student demonstrating

on the actual robot and the rest following the scenes

closely on their workstations.

Currently we have successfully tested and used the

features detailed through this paper. The simulation

package can be found at www.bridgeport.edu/~risc. The

future work on this package will not be detailed, as the

package itself was designed as only a basis for various

future applications.

References

[1] http://home.pacific.net.hk/~edx/

[2] Benedetti, R., and Risler, J. J. “In Real Algebraic and

Semi-algebraic Sets” (1990), Hermann, pp. 8-19

[3] McKerrow, Phillip John, “Introduction to Robotics”,

Addison Wesley, 1991

[4] Journal of Intelligent and Robotic Systems - Theory and

Applications (Incorporating Mechatronic Systems

Engineering) / Kluwer Academic Publishing, Mihali, Raul C.,

Sobh, Tarek M., The Formula One Tire Changing Robot (F1-

T.C.R.), accepted for publication in the Journal of Intelligent

and Robotic Systems, April 1999

[5] Journal of Intelligent and Robotic Systems - Theory and

Applications (Incorporating Mechatronic Systems

Engineering) / Kluwer Academic Publishing, Mihali, Raul C.,

Mher Grigorian, Sobh, Tarek M., An Application of Robotic

Optimization: Design for a Tire Changing Robot, 28-36, 1999

[6] Journal of Intelligent and Robotic Systems - Theory and

Applications (Incorporating Mechatronic Systems

Engineering) / Kluwer Academic Publishing, Tarek M. Sobh,

Abdelshakour A. Abuzneid and Raul Mihali, A PC-Based

Simulator/Controller/Monitor software for manipulators and

Electromechanical Systems, 2000

[7] Mitsubishi Industrial Micro-Robot System Model RV-M1

MoveMaster EX Technical Manual, Mitsubishi Electric

Corporation, Japan

[8] http://www.ccwap.com/hdml.htm

[9] Assisted Graphics - FORTRAN programs for Geometrical

Representations, Volumes I and II, A. Tanasescu, R.

Constantinescu, I.D.Marinescu, L. Busuioc, Editura

TEHNICA, Bucharest, 1989

